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Chapter 1

Welcome to NIMBLE

NIMBLE is a system for building and sharing analysis methods for statistical models, es-
pecially for hierarchical models and computationally-intensive methods. This is an early
version, 0.4. You can do quite a bit with it, but it has some rough edges and gaps, and we
plan to keep expanding it. If you want to analyze data, we hope you will find something
already useful. If you want to build algorithms, we hope you will program in NIMBLE and
make an R package providing your method. We also hope you will join the mailing lists
(R-nimble.org) and help improve NIMBLE by telling us what you want to do with it, what
you like, and what could be better. We have a lot of ideas for how to improve it, but we
want your help and ideas too.

1.1 Why something new?

There is a lot of statistical software out there. Why did we build something new? More and
more, statistical models are being customized to the details of each project. That means it
is often difficult to find a package whose set of available models and methods includes what
you need. And more and more, statistical models are hierarchical, meaning they have some
unobserved random variables between the parameters and the data. These may be random
effects, shared frailties, latent states, or other such things. Or a model may be hierarchical
simply due to putting Bayesian priors on parameters. Except for simple cases, hierarchical
statistical models are often analyzed with computationally-intensive algorithms, the best
known of which is Markov chain Monte Carlo (MCMC).

Several existing software systems have become widely used by providing a flexible way to
say what the model is and then automatically providing an algorithm such as MCMC. When
these work, and when MCMC is what you want, that’s great. Unfortunately, there are a lot
of hard models out there for which default MCMCs don’t work very well. And there are also
a lot of useful new and old algorithms that are not MCMC, but they can be hard to find
implemented for the model you need, and you may have to go learn a new system to use a
new algorithm. That’s why we wanted to create a system that combines a flexible system for
model specification – the BUGS language – with the ability to program with those models.
That’s the goal of NIMBLE.

5
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1.2 What does NIMBLE do?

NIMBLE stands for Numerical Inference for statistical Models for Bayesian and Likelihood
Estimation. Although NIMBLE was motivated by algorithms for hierarchical statistical
models, you could use it for simpler models too.

You can think of NIMBLE as comprising three pieces:

1. A system for writing statistical models flexibly, which is an extension of the BUGS
language1.

2. A library of algorithms such as MCMC.
3. A language, called NIMBLE, embedded within and similar in style to R, for writing

algorithms that operate on BUGS models.

Both BUGS models and NIMBLE algorithms are automatically processed into C++
code, compiled, and loaded back into R with seamless interfaces.

Since NIMBLE can compile R-like functions into C++ that use the Eigen library for fast
linear algebra, it can be useful for making fast numerical functions with or without BUGS
models involved2.

One of the beauties of R is that many of the high-level analysis functions are themselves
written in R, so it is easy to see their code and modify them. The same is true for NIMBLE:
the algorithms are themselves written in the NIMBLE language.

1.3 How to use this manual

We emphasize that you can use NIMBLE for data analysis with the algorithms provided
by NIMBLE without ever using the NIMBLE language to write algorithms. So as you get
started, feel free to focus on Chapters 2-8. The algorithm library in Version 0.4 is just a
start, so we hope you’ll let us know what you want to see and consider writing it in NIMBLE.
More about NIMBLE programming comes in Chapter 9.

1But see Section 5.1 for information about both limitations and extensions to how NIMBLE handles
BUGS right now.

2The packages Rcpp and RcppEigen provide different ways of connecting C++, the Eigen library and R.
In those packages you program directly in C++, while in NIMBLE you program in an R-like fashion and
the NIMBLE compiler turns it into C++. Programming directly in C++ allows full access to C++, while
programming in NIMBLE allows simpler code.

http://www.rcpp.org/


Chapter 2

Lightning introduction

2.1 A brief example

Here we’ll give a simple example of building a model and running some algorithms on the
model, as well as creating our own user-specified algorithm. The goal is to give you a sense
for what one can do in the system. Later sections will provide more detail.

We’ll use the pump model example from BUGS1. We could load the model from the
standard BUGS example file formats (Section 5.3.2), but instead we’ll show how to enter it
directly in R.

In this “lightning introduction” we will:

1. Create the model for the pump example.
2. Compile the model.
3. Create a basic MCMC specification for the pump model.
4. Compile and run the MCMC
5. Customize the MCMC specification and compile and run that.
6. Create, compile and run a Monte Carlo Expectation Maximization (MCEM) algorithm,

which illustrates some of the flexibility NIMBLE provides to combine R and NIMBLE.
7. Write a short nimbleFunction to generate simulations from designated nodes of any

model.

2.2 Creating a model

First we define the model code, its constants, data, and initial values for MCMC.

pumpCode <- nimbleCode({
for (i in 1:N){

theta[i] ~ dgamma(alpha,beta)

lambda[i] <- theta[i]*t[i]

x[i] ~ dpois(lambda[i])

1The data set describes failure times of some pumps.

7
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}
alpha ~ dexp(1.0)

beta ~ dgamma(0.1,1.0)

})

pumpConsts <- list(N = 10,

t = c(94.3, 15.7, 62.9, 126, 5.24,

31.4, 1.05, 1.05, 2.1, 10.5))

pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))

pumpInits <- list(alpha = 1, beta = 1,

theta = rep(0.1, pumpConsts$N))

Now let’s create the model and look at some of its nodes.

pump <- nimbleModel(code = pumpCode, name = 'pump', constants = pumpConsts,

data = pumpData, inits = pumpInits)

## defining model...

## building model...

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## model building finished

pump$getNodeNames()

## [1] "alpha" "beta"

## [3] "lifted_d1_over_beta" "theta[1]"

## [5] "theta[2]" "theta[3]"

## [7] "theta[4]" "theta[5]"

## [9] "theta[6]" "theta[7]"

## [11] "theta[8]" "theta[9]"

## [13] "theta[10]" "lambda[1]"

## [15] "lambda[2]" "lambda[3]"

## [17] "lambda[4]" "lambda[5]"

## [19] "lambda[6]" "lambda[7]"

## [21] "lambda[8]" "lambda[9]"

## [23] "lambda[10]" "x[1]"

## [25] "x[2]" "x[3]"

## [27] "x[4]" "x[5]"

## [29] "x[6]" "x[7]"

## [31] "x[8]" "x[9]"

## [33] "x[10]"



CHAPTER 2. LIGHTNING INTRODUCTION 9

pump$x

## [1] 5 1 5 14 3 19 1 1 4 22

pump$logProb_x

## [1] -2.998011 -1.118924 -1.882686 -2.319466 -4.254550

## [6] -20.739651 -2.358795 -2.358795 -9.630645 -48.447798

pump$alpha

## [1] 1

pump$theta

## [1] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

pump$lambda

## [1] 9.430 1.570 6.290 12.600 0.524 3.140 0.105 0.105

## [9] 0.210 1.050

Notice that in the list of nodes, NIMBLE has introduced a new node, lifted d1 over beta.
We call this a “lifted” node. Like R, NIMBLE allows alternative parameterizations, such as
the scale or rate parameterization of the gamma distribution. Choice of parameterization
can generate a lifted node, as can using a link function or a distribution argument that is
an expression. It’s helpful to know why they exist, but you shouldn’t need to worry about
them.

Thanks to the plotting capabilities of the igraph package that NIMBLE uses to represent
the directed acyclic graph, we can plot the model (figure 2.1).

plot(pump$graph)

You are in control of the model. By default, nimbleModel does its best to initialize a
model, but let’s say you want to re-initialize theta. To simulate from the prior for theta

(overwriting the initial values previously in the model) we first need to be sure the parent
nodes of all theta[i] nodes are fully initialized, including any non-stochastic nodes such
as lifted nodes. We then use the simulate function to simulate from the distribution for
theta. Finally we use the calculate function to calculate the dependencies of theta,
namely lambda and the log probabilities of x to ensure all parts of the model are up to date.
First we show how to use the model’s getDependencies method to query information about
its graph.

## Show all dependencies of alpha and beta terminating in stochastic nodes

pump$getDependencies(c('alpha', 'beta'))
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Figure 2.1: Directed Acyclic Graph plot of the pump model, thanks to the igraph package
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## [1] "alpha" "beta"

## [3] "lifted_d1_over_beta" "theta[1]"

## [5] "theta[2]" "theta[3]"

## [7] "theta[4]" "theta[5]"

## [9] "theta[6]" "theta[7]"

## [11] "theta[8]" "theta[9]"

## [13] "theta[10]"

## Now show only the deterministic dependencies

pump$getDependencies(c('alpha', 'beta'), determOnly = TRUE)

## [1] "lifted_d1_over_beta"

## Check that the lifted node was initialized.

pump[["lifted_d1_over_beta"]] ## It was.

## [1] 1

## Now let's simulate new theta values

set.seed(0) ## This makes the simulations here reproducible

simulate(pump, 'theta')

pump$theta ## the new theta values

## [1] 1.79180692 0.29592523 0.08369014 0.83617765 1.22254365

## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

## lambda and logProb_x haven't been re-calculated yet

pump$lambda ## these are the same values as above

## [1] 9.430 1.570 6.290 12.600 0.524 3.140 0.105 0.105

## [9] 0.210 1.050

pump$logProb_x

## [1] -2.998011 -1.118924 -1.882686 -2.319466 -4.254550

## [6] -20.739651 -2.358795 -2.358795 -9.630645 -48.447798

getLogProb(pump, 'x') ## The sum of logProb_x

## [1] -96.10932

calculate(pump, pump$getDependencies(c('theta')))

## [1] -286.6951

pump$lambda ## Now they have.

## [1] 168.9673926 4.6460261 5.2641096 105.3583839 6.4061287

## [6] 36.3723548 1.0395209 0.3227420 0.1987001 1.6506161

pump$logProb_x

## [1] -148.106356 -3.110014 -1.747041 -65.346457 -2.626123

## [6] -7.429868 -1.000761 -1.453644 -9.840589 -39.096527
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Notice that the first getDependencies call returned dependencies from alpha and beta

down to the next stochastic nodes in the model. The second call requested only deterministic
dependencies. The call to calculate(pump, ‘theta’) expands ‘theta’ to include all nodes
in theta. After simulating into theta, we can see that lambda and the log probabilities of
x still reflect the old values of theta, so we calculate them and then see that they have
been updated.

2.3 Compiling the model

Next we compile the model, which means generating C++ code, compiling that code, and
loading it back into R with an object that can be used just like the uncompiled model. The
values in the compiled model will be initialized from those of the original model in R, but
the original and compiled models are distinct objects so any subsequent changes in one will
not be reflected in the other.

Cpump <- compileNimble(pump)

Cpump$theta

## [1] 1.79180692 0.29592523 0.08369014 0.83617765 1.22254365

## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

Note that the compiled model is used when running any NIMBLE algorithms via C++,
so the model needs to be compiled before (or at the same time as) any compilation of
algorithms, such as the compilation of the MCMC done in the next section.

2.4 Creating, compiling and running a basic MCMC

specification

At this point we have initial values for all of the nodes in the model and we have both the
original and compiled versions of the model. As a first algorithm to try on our model, let’s
use NIMBLE’s default MCMC. Note that conjugate relationships are detected for all nodes
except for alpha, on which the default sampler is a random walk Metropolis sampler.

pumpSpec <- configureMCMC(pump, print = TRUE)

## [1] RW sampler: alpha, adaptive: TRUE, adaptInterval: 200, scale: 1

## [2] conjugate_dgamma sampler: beta, dependents_dgamma: theta[1], theta[2], theta[3], theta[4], theta[5], theta[6], theta[7], theta[8], theta[9], theta[10]

## [3] conjugate_dgamma sampler: theta[1], dependents_dpois: x[1]

## [4] conjugate_dgamma sampler: theta[2], dependents_dpois: x[2]

## [5] conjugate_dgamma sampler: theta[3], dependents_dpois: x[3]

## [6] conjugate_dgamma sampler: theta[4], dependents_dpois: x[4]

## [7] conjugate_dgamma sampler: theta[5], dependents_dpois: x[5]

## [8] conjugate_dgamma sampler: theta[6], dependents_dpois: x[6]
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## [9] conjugate_dgamma sampler: theta[7], dependents_dpois: x[7]

## [10] conjugate_dgamma sampler: theta[8], dependents_dpois: x[8]

## [11] conjugate_dgamma sampler: theta[9], dependents_dpois: x[9]

## [12] conjugate_dgamma sampler: theta[10], dependents_dpois: x[10]

pumpSpec$addMonitors(c('alpha', 'beta', 'theta'))

## thin = 1: alpha, beta, theta

pumpMCMC <- buildMCMC(pumpSpec)

CpumpMCMC <- compileNimble(pumpMCMC, project = pump)

niter <- 1000

set.seed(0)

CpumpMCMC$run(niter)

## NULL

samples <- as.matrix(CpumpMCMC$mvSamples)

par(mfrow = c(1, 4), mai = c(.6, .5, .1, .2))

plot(samples[ , 'alpha'], type = 'l', xlab = 'iteration',

ylab = expression(alpha))

plot(samples[ , 'beta'], type = 'l', xlab = 'iteration',

ylab = expression(beta))

plot(samples[ , 'alpha'], samples[ , 'beta'], xlab = expression(alpha),

ylab = expression(beta))

plot(samples[ , 'theta[1]'], type = 'l', xlab = 'iteration',

ylab = expression(theta[1]))
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Notice the posterior correlation between alpha and beta. A measure of the mixing for
each is the autocorrelation for each parameter, shown by the acf plots.

2.5 Customizing the MCMC

Let’s add an adaptive block sampler on alpha and beta jointly and see if that improves the
mixing.

pumpSpec$addSampler(target = c('alpha', 'beta'), type = 'RW_block',

control = list(adaptInterval = 100))

## [13] RW_block sampler: alpha, beta, adaptive: TRUE, adaptScaleOnly: FALSE, adaptInterval: 100, scale: 1, propCov: identity

pumpMCMC2 <- buildMCMC(pumpSpec)

# need to reset the nimbleFunctions in order to add the new MCMC

CpumpNewMCMC <- compileNimble(pumpMCMC2, project = pump,

resetFunctions = TRUE)

set.seed(0);

CpumpNewMCMC$run(niter)

## NULL

samplesNew <- as.matrix(CpumpNewMCMC$mvSamples)

par(mfrow = c(1, 4), mai = c(.6, .5, .1, .2))

plot(samplesNew[ , 'alpha'], type = 'l', xlab = 'iteration',

ylab = expression(alpha))

plot(samplesNew[ , 'beta'], type = 'l', xlab = 'iteration',

ylab = expression(beta))

plot(samplesNew[ , 'alpha'], samplesNew[ , 'beta'], xlab = expression(alpha),

ylab = expression(beta))

plot(samplesNew[ , 'theta[1]'], type = 'l', xlab = 'iteration',

ylab = expression(theta[1]))
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We can see that the block sampler has decreased the autocorrelation for both alpha and
beta. Of course these are just short runs, and what we are really interested in is the effective
sample size of the MCMC per computation time, but that’s not the point of this example.

Once you learn the MCMC system, you can write your own samplers and include them.
The entire system is written in nimbleFunctions.

2.6 Running MCEM

NIMBLE is a system for working with algorithms, not just an MCMC engine. So let’s
try maximizing the marginal likelihood for alpha and beta using Monte Carlo Expectation
Maximization2.

pump2 <- pump$newModel()

2Note that for this model, one could analytically integrate over theta and then numerically maximize
the resulting marginal likelihood.
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## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

box = list( list(c('alpha','beta'), c(0, Inf)))

pumpMCEM <- buildMCEM(model = pump2, latentNodes = 'theta[1:10]',

boxConstraints = box)

pumpMLE <- pumpMCEM()

# Note: buildMCEM returns an R function that contains a

# nimbleFunction rather than a nimble function. That is why

# pumpMCEM() is used instead of pumpMCEM\£run().

pumpMLE

## alpha beta

## 0.8230659 1.2600147

Both estimates are within 0.01 of the values reported by George et al. [2]3. Some dis-
crepancy is to be expected since it is a Monte Carlo algorithm.

2.7 Creating your own functions

Now let’s see an example of writing our own algorithm and using it on the model. We’ll do
something simple: simulating multiple values for a designated set of nodes and calculating
every part of the model that depends on them.

Here is our nimbleFunction:

simNodesMany <- nimbleFunction(

setup = function(model, nodes) {
mv <- modelValues(model)

deps <- model$getDependencies(nodes)

allNodes <- model$getNodeNames()

},
run = function(n = integer()) {

resize(mv, n)

for(i in 1:n) {
simulate(model, nodes)

calculate(model, deps)

copy(from = model, nodes = allNodes,

to = mv, rowTo = i, logProb = TRUE)

}
})

3Their numbers were accidentally swapped in Table 2.
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simNodesTheta1to5 <- simNodesMany(pump, 'theta[1:5]')

simNodesTheta6to10 <- simNodesMany(pump, 'theta[6:10]')

Here are a few things to notice about the nimbleFunction

1. The setup function is written in R. It creates relevant information specific to our model
for use in the run-time code.

2. The setup code creates a modelValues object to hold multiple sets of values for vari-
ables in the model provided.

3. The run function is written in NIMBLE. It carries out the calculations using the
information determined once for each set of model and nodes arguments by the setup
code. The run-time code is what will be compiled.

4. The run code requires type information about the argument n. In this case it is a
scalar integer.

5. The for-loop looks just like R, but only sequential integer iteration is allowed.
6. The functions calculate and simulate, which were introduced above in R, can be

used in NIMBLE.
7. The special function copy is used here to record values from the model into the

modelValues object.
8. Multiple instances, or “specializations”, can be made by calling simNodesMany with dif-

ferent arguments. Above, simNodesTheta1to5 has been made by calling simNodesMany

with the pump model and nodes ‘theta[1:5]’ as inputs to the setup function, while
simNodesTheta6to10 differs by providing ‘theta[6:10]’ as an argument. The re-
turned objects are objects of a uniquely generated R reference class with fields (member
data) for the results of the setup code and a run method (member function). Arbi-
trary other methods can be provided with a methods argument, following the syntax
of R’s setRefClass function.

By the way, simNodesMany is very similar to a standard nimbleFunction provided with
nimble, simNodesMV.

Now let’s execute this nimbleFunction in R, before compiling it.

set.seed(0) ## make the calculation repeatable

pump$alpha <- pumpMLE[1]

pump$beta <- pumpMLE[2]

## make sure to update deterministic dependencies of the altered nodes

calculate(pump, pump$getDependencies(c('alpha','beta'), determOnly = TRUE))

## [1] 0

saveTheta <- pump$theta

simNodesTheta1to5$run(10)

simNodesTheta1to5$mv[['theta']][1:2]
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## [[1]]

## [1] 1.43717729 1.53093576 1.45028779 0.03716752 0.13310071

## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

##

## [[2]]

## [1] 0.34222406 3.45822771 0.82805042 0.08796383 0.34440151

## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

simNodesTheta1to5$mv[['logProb_x']][1:2]

## [[1]]

## [1] -115.767500 -20.856152 -73.444053 -8.258863 -3.570190

## [6] -7.429868 -1.000761 -1.453644 -9.840589 -39.096527

##

## [[2]]

## [1] -19.688263 -50.299758 -37.107538 -2.598331 -1.825300

## [6] -7.429868 -1.000761 -1.453644 -9.840589 -39.096527

In this code we have initialized the values of alpha and beta to their MLE and then
recorded the theta values to use below. Then we have requested 10 simulations from
simNodesTheta1to5. Shown are the first two simulation results for theta and the log prob-
abilities of x. Notice that theta[6:10] and the corresponding log probabilities for x[6:10]
are unchanged because the nodes being simulated are only theta[1:5]. In R, this function
runs slowly.

Finally, let’s compile the function and run that version.

CsimNodesTheta1to5 <- compileNimble(simNodesTheta1to5,

project = pump, resetFunctions = TRUE)

Cpump$alpha <- pumpMLE[1]

Cpump$beta <- pumpMLE[2]

calculate(Cpump, Cpump$getDependencies(c('alpha','beta'), determOnly = TRUE))

## [1] 0

Cpump$theta <- saveTheta

set.seed(0)

CsimNodesTheta1to5$run(10)

## NULL

CsimNodesTheta1to5$mv[['theta']][1:2]

## [[1]]

## [1] 1.43717729 1.53093576 1.45028779 0.03716752 0.13310071
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## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

##

## [[2]]

## [1] 0.34222406 3.45822771 0.82805042 0.08796383 0.34440151

## [6] 1.15835525 0.99001994 0.30737332 0.09461909 0.15720154

CsimNodesTheta1to5$mv[['logProb_x']][1:2]

## [[1]]

## [1] -115.767500 -20.856152 -73.444053 -8.258863 -3.570190

## [6] -2.593423 -1.006239 -1.180023 -1.757379 -2.531520

##

## [[2]]

## [1] -19.688263 -50.299758 -37.107538 -2.598331 -1.825300

## [6] -2.593423 -1.006239 -1.180023 -1.757379 -2.531520

Given the same initial values and the same random number generator seed, we got iden-
tical results for theta[1:5] and their dependencies, but it happened much faster.



Chapter 3

More Introduction

Now that we have shown a brief example, we will introduce more about the concepts and
design of NIMBLE. Subsequent chapters will go into more detail about working with models
and programming in NIMBLE.

One of the most important concepts behind NIMBLE is to allow a combination of high-
level processing in R and low-level processing in compiled C++. For example, when we
write a Metropolis-Hastings MCMC sampler in the NIMBLE language, the inspection of
the model structure related to one node is done in R, and the actual sampler calculations
are done in compiled C++. The theme of separating one-time high-level processing and
repeated low-level processing will become clearer as we introduce more about NIMBLE’s
components.

3.1 NIMBLE adopts and extends the BUGS language

for specifying models

We adopted the BUGS language, and we have extended it to make it more flexible. The
BUGS language became widely used in WinBUGS, then in OpenBUGS and JAGS. These
systems all provide automatically-generated MCMC algorithms, but we have adopted only
the language for describing models, not their systems for generating MCMCs. We adopted
BUGS because it has been so successful, with over 30,000 users by the time they stopped
counting [3]. Many papers and books provide BUGS code as a way to document their
statistical models. We provide a brief introduction to BUGS later, but we refer you to the
WinBUGS, OpenBUGS or JAGS websites for more material. For the most part, if you have
BUGS code, you can try NIMBLE.

NIMBLE takes BUGS code and does several things with it:

1. NIMBLE extracts all the declarations in the BUGS code to create a model definition.
This includes a directed acyclic graph (DAG) representing the model and functions
that can query model relationships from the graph. Usually you’ll ignore the model
definition and let NIMBLE’s default options take you directly to the next step.

2. From the model definition, NIMBLE builds a working model in R. This can be used
to manipulate variables and operate the model from R. Operating the model includes
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calculating, simulating, or querying the log probability value of model nodes. These
basic capabilities, along with the tools to query model structure, allow one to write
programs that use the model and adapt to its structure.

3. From the working model, NIMBLE generates customized C++ code representing the
model, compiles the C++, loads it back into R, and provides an R object that interfaces
to it. We often call the uncompiled model the “R-model” and the compiled model the
“C-model.” The C-model can be used identically to the R-model, so code written to
use one will work with the other. We use the word “compile” to refer to the entire
process of generating C++ code, compiling it and loading it into R.

More about specifying and manipulating models is in Chapter 5-6.

3.2 The NIMBLE language for writing algorithms

NIMBLE provides a language, embedded within and similar in style to R, for writing algo-
rithms that can operate on BUGS models. The algorithms can use NIMBLE’s utilities for
inspecting the structure of a model, such as determining the dependencies between variables.
And the algorithms can control the model, changing values of its variables and controlling
execution of its probability calculations or corresponding simulations. Finally, the algo-
rithms can use automatically generated data structures to manage sets of model values and
probabilities. In fact, the calculations of the model are themselves constructed as functions
in the NIMBLE language, as are the algorithms provided in NIMBLE’s algorithm library.
This means that you can extend BUGS with new distributions and new functions written in
NIMBLE.

Like the models themselves, functions in the NIMBLE language are turned into C++,
which is compiled, loaded, and interfaced to R.

Programming in NIMBLE involves a fundamental distinction between:

1. the steps for an algorithm that need to happen only once, at the beginning, such as
inspecting the model; and

2. the steps that need to happen each time a function is called, such as MCMC iterations.

When one writes a nimbleFunction, each of these parts can be provided separately. The
former, if needed, are given in a setup function, and they are executed directly in R, allowing
any feature of R to be used. The latter are in one or more run-time functions, and they are
turned into C++. Run-time code is written in the NIMBLE language, which you can think
of as a carefully controlled, small subset of R along with some special functions for handling
models and NIMBLE’s data structures.

What NIMBLE does with a nimbleFunction is similar to what it does with a BUGS
model:

1. NIMBLE creates a working R version of the nimbleFunction, which you can use with
an R-model or a C-model.

2. NIMBLE generates C++ code for the run-time function(s), compiles it, and loads it
back into R with an interface nearly identical to the R version of the nimbleFunction.
As with models, we refer to the uncompiled and compiled versions as R-nimbleFunctions



CHAPTER 3. MORE INTRODUCTION 22

and C-nimbleFunctions, respectively. In v0.4, the behavior of nimbleFunctions is usu-
ally very similar, but not identical, between the two versions. The primary purpose of
uncompiled execution is to facilitate debugging.

More about writing algorithms is in Chapter 9.

3.3 The NIMBLE algorithm library

In v0.4, the NIMBLE algorithm library includes:

1. MCMC with samplers including conjugate, slice, adaptive random walk, and adaptive
block random walk. NIMBLE’s MCMC system illustrates the flexibility of combining R
and C++. An R function inspects the model object and creates an MCMC specification
object representing choices of which kind of sampler to use for each node. This MCMC
specification can be modified in R, such as adding new samplers for particular nodes,
before compiling the algorithm. Since each sampler is written in NIMBLE, you can
use its source code or write new samplers to insert into the MCMC. And if you want
to build an entire MCMC system differently, you can do that too.

2. A nimbleFunction that provides a likelihood function for arbitrary sets of nodes in
any model. This can be useful for simple maximum likelihood estimation of non-
hierarchical models using R’s optimization functions. And it can be useful for other R
packages that run algorithms on any likelihood function.

3. A nimbleFunction that provides ability to simulate, calculate, or retrieve the summed
log probability (density) of many sets of values for arbitrary sets of nodes.

4. A nimbleFunction that provides a basic particle filter for a state-space model.
5. A basic Monte Carlo Expectation Maximization (MCEM) algorithm. MCEM has its

issues as an algorithm, such as potentially slow convergence to the maximum likelihood
(i.e., empirical Bayes in this context) estimates, but we chose it as a good illustration
of how NIMBLE can be used. Each MCMC step uses NIMBLE’s MCMC; the objective
function for maximization is another nimbleFunction; and the actual maximization
is done through R’s optim function1.

More about the NIMBLE algorithm library is in Chapter 8.

1In the future we plan to provide direct access to R’s optimizers from within nimbleFunctions.
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Installing NIMBLE

4.1 Requirements to run NIMBLE

You can run NIMBLE on any of the three common operating systems: Linux, Mac OS X,
or Windows.

The following are required to run NIMBLE.

1. R, of course.
2. The igraph R package.
3. A working C++ compiler that R can use on your system. There are standard open-

source C++ compilers that the R community has already made easy to install. You
don’t need to know anything about C++ to use NIMBLE.

NIMBLE also uses a couple of C++ libraries that you don’t need to install, as they will
already be on your system or are provided by NIMBLE.

1. The Eigen C++ library for linear algebra. This comes with NIMBLE, or you can use
your own copy.

2. The BLAS and LAPACK numerical libraries. These come with R.

Most fairly recent versions of these requirements should work.

4.2 Installation

Since NIMBLE is an R package, you can install it in the usual way, via install.packages

or related mechanisms. We have not yet put in on CRAN, so you’ll have to find it at
R-nimble.org.

For most installations, you can ignore low-level details. However, there are some options
that some users may want to utilize.

4.2.1 Using your own copy of Eigen

NIMBLE uses the Eigen C++ template library for linear algebra. Version 3.2.1 of Eigen
is included in the NIMBLE package and that version will be used unless the package’s
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configuration script finds another version on the machine. This works well, and the following
is only relevant if you want to use a different (e.g., newer) version.

The configuration script looks in the standard include directories, e.g. /usr/include

and /usr/local/include for the header file Eigen/Dense. You can specify a particular
location in either of two ways:

1. Set the environment variable EIGEN DIR before installing the R package, e.g., export
EIGEN DIR=/usr/include/eigen3 in the bash shell.

2. Use R CMD INSTALL --configure-args='--with-eigen=/path/to/eigen' nimble_VERSION.tar.gz

or
install.packages("nimble", configure.args = "--with-eigen=/path/to/eigen").

In these cases, the directory should be the full path to the directory that contains the Eigen
directory, e.g. /usr/include/eigen3. It is not the full path to the Eigen directory itself,
i.e., NOT /usr/include/eigen3/Eigen.

4.2.2 Using libnimble

NIMBLE generates specialized C++ code for user-specified models and nimbleFunctions.
This code uses some NIMBLE C++ library classes and functions. By default, on Linux and
OS X, the library code is compiled once as a linkable library - libnimble. This single instance
of the library is then linked with the code for each generated model. Alternatively, one can
have the library code recompiled in each model’s own dynamically loadable library (DLL).
This does repeat the same code across models and so occupies more memory. There may be
a marginal speed advantage. This is currently what happens on Windows. One can disable
using libnimble via the configuration argument --enable-lib, e.g.,

R CMD INSTALL --configure-args='--enable-lib=false' nimble_VERSION.tar.gz

4.2.3 LAPACK and BLAS

NIMBLE also uses BLAS and LAPACK for some of its linear algebra (in particular cal-
culating density values and generating random samples from multivariate distributions).
NIMBLE will use the same BLAS and LAPACK installed on your system that R uses. Note
that a fast (and where appropriate, threaded) BLAS can greatly increase the speed of linear
algebra calculations. See Section A.3.1 of the R Installation and Administration manual for
more details on providing a fast BLAS for your R installation.

4.2.4 Problems with Installation

We have tested the installation on the three commonly used platforms – OS X, Linux,
Windows1. We don’t anticipate problems with installation, but we want to hear about any
and help resolve them. Please post about installation problems to the nimble-users Google
group or email nimble.stats@gmail.com.

1We’ve tested NIMBLE on Windows 7 and 8



CHAPTER 4. INSTALLING NIMBLE 25

4.3 Installing a C++ compiler for R to use

In addition to needing a C++ compiler to install the package (from source), you also need to
have a C++ compiler and the utility make at run-time. This is needed during the R session
to compile the C++ code that NIMBLE generates for a user’s models and algorithms.

4.3.1 OS X

On OS X, you should install Xcode. The command-line tools, which are available as a smaller
installation, should be sufficient. This is freely available from the Apple developer site and
the App Store.

For the compiler to work correctly for OS X, it is very important that the installed R
be matched to the correct OS, i.e. R for Snow Leopard will attempt to use the incorrect
compiler if the user has OS 10.9 or higher.

4.3.2 Linux

On Linux, you can install the GNU compiler suite (gcc/g++). You can use the package
manager to install pre-built binaries. On Ubuntu, the following command will install or
update make, gcc and libc.

sudo apt-get install build-essential

4.3.3 Windows

On Windows, you should download and install Rtools.exe available from http://cran.

r-project.org/bin/windows/Rtools/. Select the appropriate executable corresponding
to your version of R. (We strongly recommend using the most recent version of R, currently
3.2.1, and hence Rtools33.exe). This installer leads you through several “pages”. We think
you can accept the defaults with one exception: check the PATH checkbox (page 5) so that
the installer will add the location of the C++ compiler and related tools to your system’s
PATH, ensuring that R can find them. After you click “Next”, you will get a page with a
window for customizing the new PATH variable. You shouldn’t need to do anything there,
so you can simply click “Next” again.

We note that it is essential the checkbox for the “R 2.15+ toolchain” (page 4) be enabled
in order to have gcc/g++, make, etc. installed. This should be checked by default.

Advanced users may wish to change their default compilers. This can be done by editing
the Makevars file, see Writing R Externsions: 1.2.1.

4.4 Customizing Compilation of the NIMBLE-generated

Code

For each model or nimbleFunction, the NIMBLE package generates and compiles C++ code.
This uses classes and routines available through the NIMBLE run-time library and also

https://developer.apple.com/xcode/downloads/
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
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the Eigen library. The compilation mechanism uses R’s SHLIB functionality and therefore
uses the regular R configuration in ${R_HOME}/etc${R_ARCH}/Makeconf. NIMBLE places
a Makevars file in the directory in which the code is generated and R CMD SHLIB uses this
file.

In all but specialized cases, the general compilation mechanism will suffice. However,
one can customize this. One can specify the location of an alternative Makevars (or Make-
vars.win) file to use. Such an alternative file should define the variables PKG CPPFLAGS and
PKG LIBS. These should contain, respectively, the pre-processor flag to locate the NIMBLE
include directory, and the necessary libraries to link against (and their location as necessary),
e.g., Rlapack and Rblas on Windows, and libnimble.

Use of this file allows users to specify additional compilation and linking flags. See the
Writing R Extensions manual for more details of how this can be used and what it can
contain.



Chapter 5

Building models

NIMBLE aims to be compatible with the original BUGS language and also the version
used by the popular JAGS package, as well as to extend the BUGS language. However, at
this point, there are some BUGS features not supported by NIMBLE, and there are some
extensions that are planned but not implemented.

For readers familiar with BUGS, we begin with an overview of supported features and
extensions.

5.1 Overview of supported features and extensions of

BUGS and JAGS

5.1.1 Supported features of BUGS and JAGS

1. Stochastic and deterministic1 node declarations.
2. Most univariate and multivariate distributions.
3. Link functions.
4. Most mathematical functions.
5. “for” loops for iterative declarations.
6. Arrays of nodes up to 4 dimensions.
7. Truncation and censoring as in JAGS using the T() notation and dinterval.

5.1.2 NIMBLE’s Extensions to BUGS and JAGS

NIMBLE extends the BUGS language in the following ways:

1. User-defined functions and distributions – written as nimbleFunctions – can be used
in model code. See Section 5.2.5.

2. Multiple parameterizations for distributions, similar to those in R, can be used.
3. Named parameters for distributions and functions, similar to R function calls, can be

used.

1NIMBLE calls non-stochastic nodes “deterministic”, whereas BUGS calls them “logical”. NIMBLE uses
“logical” in the way R does, to refer to boolean (TRUE/FALSE) variables.
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4. Distribution parameters can be expressions2, as in JAGS but not in WinBUGS. Caveat:
parameters to multivariate distributions (e.g., dmnorm) cannot be expressions.

5. Alternative models can be defined from the same model code by using if-then-else
statements that are evaluated when the model is defined.

6. More flexible indexing of vector nodes within larger variables is allowed. For example
one can place a multivariate normal vector arbitrarily within a higher-dimensional
object, not just in the last index.

7. More general constraints can be declared using dconstraint, which extends the con-
cept of JAGS’ dinterval. See Section 5.2.8.

8. Link functions can be used in stochastic, as well as deterministic, declarations.3

9. Data values can be reset, and which parts of a model are flagged as data can be
changed, allowing one model to be used for different data sets without rebuilding the
model each time.

5.1.3 Not-yet-supported features of BUGS and JAGS

In this release, the following are not supported.

1. Stochastic indices (but see Section 5.2.5 for a description of how you could handle some
cases with user-defined distributions).

2. The appearance of the same node on the left-hand side of both a <- and a ∼ declaration
(used in WinBUGS for data assignment for the value of a stochastic node).

3. Like BUGS, NIMBLE generally determines the dimensionality and sizes of variables
from the BUGS code. However, when a variable appears with blank indices, such
as in x.sum <- sum(x[]), NIMBLE currently requires that the dimensions of x be
provided.

4. Multivariate nodes must appear with brackets, even if they are empty. E.g., x cannot
be multivariate but x[] or x[2:5] can be.

5.2 Writing models

5.2.1 Declaring stochastic and deterministic nodes

The WinBUGS, OpenBUGS and JAGS manuals are useful resources for writing BUGS mod-
els. Here we will just introduce the basics of the BUGS language – and some of NIMBLE’s
extensions – with a block of code showing a variety of declarations:

exampleCode <- nimbleCode({
## 1. normal distribution with BUGS parameter order

x ~ dnorm(a + b * c, tau)

## 2. normal distribution with a named parameter

y ~ dnorm(a + b * c, sd = sigma)

2e.g., y ∼ dnorm(5 + mu, 3 * exp(tau))
3But beware of the possibility of needing to set values for “lifted” nodes created by NIMBLE.
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## 3. For-loop and nested indexing

for(i in 1:N) {
for(j in 1:M[i]) {

z[i,j] ~ dexp(r[ blockID[i] ])

}
}
## 4. multivariate distribution with arbitrary indexing

for(i in 1:3)

mvx[8:10, i] ~ dmnorm(mvMean[3:5], cov = mvCov[1:3, 1:3, i])

## 5. User-provided distribution

w ~ dMyDistribution(hello = x, world = y)

## 6. Simple deterministic node

d1 <- a + b

## 7. Vector deterministic node with matrix multiplication

d2[] <- A[ , ] %*% mvMean[1:5]

## 8. Deterministic node with user-provided function

d3 <- foo(x, hooray = y)

})

This code does not show a complete model and includes some arbitrary indices (e.g.
mvx[8:10, i]) to illustrate flexibility. When a variable appears only on the right-hand side,
it must be provided in data or constants. Notes on the comment-numbered lines are:

1. x follows a normal distribution with mean a + b*c and precision tau (default BUGS
second parameter for dnorm).

2. y follows a normal distribution with the same mean as x but a named standard devi-
ation parameter instead of a precision parameter (sd = 1/sqrt(precision)).

3. z[i, j] follows an exponential distribution with parameter r[blockID[i] ]. This
shows how for-loops can be used for indexing of variables containing multiple nodes.
Nested indexing can be used if the nested indices (blockID) are provided as constants
when the model is defined (via nimbleModel or readBUGSmodel). Variables that define
for-loop indices (N and M) must be provided as constants.

4. The arbitrary block mvx[8:10, i] follows a multivariate normal distribution, with a
named covariance matrix instead of BUGS’ default of a precision matrix. As in R,
curly braces for for-loop contents are only needed if there is more than one line.

5. w follows a user-defined distribution. See Section 5.2.5.
6. d1 is a scalar deterministic node that, when calculated, will be set to a + b.
7. d2 is a vector deterministic node using matrix multiplication in R’s syntax.
8. d3 is a deterministic node using a user-provided function. See Section 5.2.5.

More about indexing

Examples of allowed indexing include:

• x[i]
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• x[i:j]

• x[i:j,k:l] and indexing of higher dimensional arrays
• x[i:j, ]

• x[3*i+7]

• x[(3*i):(5*i+1)]

When calling functions such as mean and sum on a vector variable, the square brackets
are required but can have blank indices, e.g. xbar <- mean(x[]) if x is a vector and xbar

<- mean(x[,]) if x is a matrix 4.
NIMBLE does not allow multivariate nodes to be indicated without square brackets,

which is an incompatibility with JAGS. Therefore a statement like xbar <- mean(x) in
JAGS must be converted to xbar <- mean(x[]) for NIMBLE.

Here’s an example of indexing in the context of multivariate nodes, showing two ways to
do the indexing. The first provides indices, so no dimensions argument is needed, while the
second omits the indices and provides a dimensions argument instead.

code <- nimbleCode({
y[1:K] ~ dmulti(p[1:K], n)

p[1:K] ~ ddirch(alpha[1:K])

log(alpha[1:K]) ~ dmnorm(alpha0[1:K], R[1:K, 1:K])

})

K <- 5

model <- nimbleModel(code, constants = list(n = 3, K = K,

alpha0 = rep(0, K), R = diag(K)),

check = FALSE)

## defining model...

## building model...

## model building finished

codeAlt <- nimbleCode({
y[] ~ dmulti(p[], n)

p[] ~ ddirch(alpha[])

log(alpha[]) ~ dmnorm(alpha0[], R[ , ])

})

model <- nimbleModel(codeAlt, constants = list(n = 3, K = K,

alpha0 = rep(0, K), R = diag(K)),

dimensions = list(y = K, p = K, alpha = K),

check = FALSE)

## defining model...

## building model...

## model building finished

4This is a case where the dimension of x must be provided when defining the model.
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5.2.2 Available distributions and functions

Distributions

NIMBLE supports most of the distributions allowed in BUGS and JAGS. Table 5.1 lists
the distributions that are currently supported, with their default parameterizations, which
match those of BUGS. NIMBLE also allows one to use alternative parameterizations for a
variety of distributions as described next.

Note that the same distributions are available for writing nimbleFunctions, but in that
case the default parameterizations match R’s when possible (see Chapter 9).

Table 5.1: Distributions with their default order of parameters. The value of the random variable
is denoted by x.

Name Usage Density Lower Upper

Bernoulli dbern(prob = p)
px(1− p)1−x 0 1

0 < p < 1
Beta dbeta(shape1 = a, shape2 = b) xa−1(1− x)b−1

β(a, b)
0 1

a > 0, b > 0
Binomial dbin(prob = p, size = n) (

n
x

)
px(1− p)n−x 0 n

0 < p < 1, n ∈ N∗

Categorical dcat(prob = p) px∑
i pi

1 N
p ∈ (R+)N

Chi-square dchisq(df = k) x
k
2
−1 exp(−x/2)

2
k
2 Γ( k

2
)

0
k > 0

Dirichlet ddirch(alpha = α)
Γ(
∑

i αi)
∏
j

x
αj−1
j

Γ(αj)

0
αj ≥ 0

Exponential dexp(rate = λ)
λ exp(−λx)

0
λ > 0

Gamma dgamma(shape = r, rate = λ) λrxr−1 exp(−λx)
Γ(r)

0
λ > 0, r > 0

Logistic dlogis(location = µ, rate = τ) τ exp{(x− µ)τ}
[1 + exp{(x− µ)τ}]2τ > 0

Log-normal dlnorm(meanlog = µ, taulog = τ) (
τ

2π

) 1
2 x−1 exp

{
−τ(log(x)− µ)2/2

} 0
τ > 0

Multinomial dmulti(prob = p, size = n)
n!
∏
j

p
xj
j

xj !
∑

j xj = n

Multivariate dmnorm(mean = µ, prec = Λ)
(2π)−

d
2 |Λ|

1
2 exp{−(x− µ)TΛ(x− µ)/2}

normal Λ positive definite
Negative dnegbin(prob = p, size = r) (

x+r−1
x

)
pr(1− p)x 0

binomial 0 < p ≤ 1, r ≥ 0
Normal dnorm(mean = µ, tau = τ) (

τ
2π

) 1
2 exp{−τ(x− µ)2/2}τ > 0

Poisson dpois(lambda = λ) exp(−λ)λx

x!

0
λ > 0

Student t dt(mu = µ, tau = τ, df = k) Γ( k+1
2

)

Γ( k
2

)

(
τ
kπ

) 1
2

{
1 + τ(x−µ)2

k

}− (k+1)
2

τ > 0, k > 0
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Table 5.1: Distributions with their default order of parameters. The value of the random variable
is denoted by x.

Name Usage Density Lower Upper

Uniform dunif(min = a, max = b) 1
b− a

a b
a < b

Weibull dweib(shape = v, lambda = λ)
vλxv−1 exp(−λxv) 0

v > 0, λ > 0
Wishart dwish(R = R, df = k) |x|(k−p−1)/2|R|k/2 exp{−tr(Rx/2)}

2pk/2Γp(k/2)R p× p pos. def., k ≥ p

Alternative parameterizations for distributions

NIMBLE allows one to specify distributions in model code using a variety of parameteri-
zations, including the BUGS parameterizations. Behind the scenes, NIMBLE uses a single
parameterization (NIMBLE’s ‘canonical’ parameterization) when definining nodes and rela-
tionships between nodes and when doing calculations.

The full set of parameterizations that one can used in model code is listed in Table 5.2. To
understand how NIMBLE handles alternative parameterizations, it is useful to distinguish
three cases, using the gamma distribution as an example:

1. A canonical parameterization is used directly for computations. Usually this is the
parameterization in the Rmath header of R’s C implementation of distributions. For
gamma, this is (shape, scale).

2. The BUGS parameterization is the one defined in the original BUGS language. For
gamma, this is (shape, rate).

3. An alternative parameterization is one that must be converted into the canonical pa-
rameterization. For example, NIMBLE provides a (mean, sd) parameterization and
creates nodes to calculate (shape, scale) from (mean, sd). In the case of gamma, the
BUGS parameterization is also an alternative parameterization.

Since NIMBLE provides compatibility with existing BUGS and JAGS code, the order of
parameters places the BUGS parameterization first. For example, the order of parameters
for dgamma is dgamma(shape, rate, scale, mean, sd). Like R, if parameter names are
not given, they are taken in order, so that (shape, rate) is the default. This happens to
match R’s order of parameters, but it need not. If names are given, they can be given in
any order. NIMBLE knows that rate is an alternative to scale and that (mean, sd) are an
alternative to (shape, scale or rate).
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Table 5.2: Distribution parameterizations allowed in NIMBLE. The first column indicates
the supported parameterizations for distributions given in Table 5.1. The second column
indicates the relationship to the canonical parameterization used in NIMBLE.

Parameterization NIMBLE re-parameterization

dbern(prob) dbin(size = 1, prob)

dbeta(shape1, shape2) canonical
dbeta(mean, sd) dbeta(shape1 = mean^2 * (1-mean) / sd^2 - mean,

shape2 = mean * (1 - mean)^2 / sd^2 + mean - 1)

dbin(prob, size) canonical
dcat(prob) canonical
dchisq(df) canonical
ddirch(alpha) canonical
dexp(rate) canonical
dexp(scale) dexp(rate = 1/scale)

dgamma(shape, scale) canonical
dgamma(shape, rate) dgamma(shape, scale = 1 / rate

dgamma(mean, sd) dgamma(shape = mean^2/sd^2, scale = sd^2/mean)

dlogis(location, scale) canonical
dlogis(location, rate) dlogis(location, scale = 1 / rate

dlnorm(meanlog, sdlog) canonical
dlnorm(meanlog, taulog) dlnorm(meanlog, sdlog = 1 / sqrt(taulog)

dlnorm(meanlog, varlog) dlnorm(meanlog, sdlog = sqrt(varlog)

dmulti(prob, size) canonical
dmnorm(mean, cholesky, prec param=1) canonical (precision)
dmnorm(mean, cholesky, prec param=0) canonical (covariance)
dmnorm(mean, prec) dmnorm(mean, cholesky = chol(prec), prec param=1)

dmnorm(mean, cov) dmnorm(mean, cholesky = chol(cov), prec param=0)

dnegbin(prob, size) canonical
dnorm(mean, sd) canonical
dnorm(mean, tau) dnorm(mean, sd = 1 / sqrt(var))

dnorm(mean, var) dnorm(mean, sd = sqrt(var))

dpois(lambda) canonical
dt(mu, sigma, df) canonical
dt(mu, tau, df) dt(mu, sigma = 1 / sqrt(tau), df)

dt(mu, sigma2, df) dt(mu, sigma = sqrt(sigma2), df)

dunif(min, max) canonical
dweib(shape, scale) canonical
dweib(shape, rate) dweib(shape, scale = 1 / rate)

dweib(shape, lambda) dweib(shape, scale = lambda^(- 1 / shape)

dwish(R, df) dwish(cholesky = chol(R), df, scale param = 0)

dwish(S, df) dwish(cholesky = chol(S), df, scale param = 1)
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Note that for multivariate normal and Wishart, the canonical parameterization uses the
Cholesky decomposition of either of the precision or covariance matrix. In some cases it may
be more efficient to use that parameterization directly. If prec param is TRUE, the cholesky
argument is treated as the Cholesky decomposition of a precision matrix. Otherwise it is
treated as the Cholesky decomposition of a covariance matrix.

In addition, we provide alternative distribution names, known as aliases, as in JAGS, as
specified in Table 5.3.

Distribution Canonical name Alias
Binomial dbin dbinom
Chi-square dchisq dchisqr
Dirichlet ddirch ddirich
Multinomial dmulti dmultinom
Negative binomial dnegbin dnbinom
Weibull dweib dweibull
Wishart dwish dwishart

Table 5.3: Distributions with alternative names (aliases).
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We plan to, but do not currently, include the following distributions as part of core
NIMBLE: double exponential (Laplace), beta-binomial, Dirichlet-multinomial, F, inverse
gamma, Pareto, inverse Wishart, and various forms of multivariate t.

5.2.3 Available BUGS language functions

Tables 5.4-5.5 show the available operators and functions. These are also available for
nimbleFunction programming (see Chapter 9). In fact, BUGS model nodes are imple-
mented as nimbleFunctions that are custom-generated from BUGS declarations, so it would
be more correct to say that functions and operators available for nimbleFunctions are also
available for the model declarations.

For the most part NIMBLE supports the functions used in BUGS and JAGS, with ex-
ceptions indicated in the table. Additional functions provided by NIMBLE are also listed.
Note that we provide distribution functions for use in calculations, namely the “p”, “q”, and
“d” functions. See Section 9.5.19 for details on the syntax for using distribution functions,
as only some parameterizations are allowed and the names of some distributions differ from
those used to define nodes in a model.

Table 5.4: Functions operating on scalars, many of which can operate on each element (component-wise) of
vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

Usage Description Comments Status Accepts
vector input

x | y, x & y logical OR (|) and AND(&) !

!x logical not !

x > y, x >= y greater than (and or equal to) !

x < y, x <= y less than (and or equal to) !

x != y, x == y (not) equals !

x + y, x - y, x * y component-wise operators mix of scalar and vector ok ! !

x / y, component-wise division vector x and scalar y ok ! X
x^y, pow(x, y) power xy; vector x and scalar y ok ! X
x %% y modulo (remainder) !

min(x1, x2), max(x1, x2) min. (max.) of two scalars !

exp(x) exponential ! !

log(x) natural logarithm ! !

sqrt(x) square root ! !

abs(x) absolute value ! !

step(x) step function at 0 0 if x < 0, 1 if x > 0 ! !

equals(x, y) equality of two scalars 1 if x == y, 0 if x! = y !

cube(x) third power x3 ! !

sin(x), cos(x), tan(x) trigonometric functions ! !

asin(x), acos(x), atan(x) inverse trigonometric functions ! !

asinh(x), acosh(x), atanh(x) inv. hyperbolic trig. functions ! !

logit(x) logit log(x/(1− x)) ! !

ilogit(x), expit(x) inverse logit exp(x)/(1 + exp(x)) ! !

probit(x) probit (Gaussian quantile) Φ−1(x) ! !

iprobit(x), phi(x) inverse probit (Gaussian CDF) Φ(x) ! !
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Table 5.4: Functions operating on scalars, many of which can operate on each element (component-wise) of
vectors and matrices. Status column indicates if the function is currently provided in NIMBLE.

Usage Description Comments Status Accepts
vector input

cloglog(x) complementary log log log(− log(1− x)) ! !

icloglog(x) inverse complementary log log 1− exp(− exp(x)) ! !

ceiling(x) ceiling function d(x)e ! !

floor(x) floor function b(x)c ! !

round(x) round to integer ! !

trunc(x) truncation to integer ! !

lgamma(x), loggam(x) log gamma function log Γ(x) ! !

log1p(x) log of 1 + x log(1 + x) ! !

lfactorial(x), logfact(x) log factorial log x! ! !

log1p(x) log one-plus log(x+ 1) ! !

qDIST(x, PARAMS) “q” distribution functions canonical parameterization !

pDIST(x, PARAMS) “p” distribution functions canonical parameterization !

rDIST(1, PARAMS) “r” distribution functions canonical parameterization !

dDIST(x, PARAMS) “d” distribution functions canonical parameterization !
sort(x)

rank(x, s)

ranked(x, s)

order(x)

Table 5.5: Functions operating on vectors and matrices. Status column indicates if the function is currently
provided in NIMBLE.

Usage Description Comments Status

inverse(x) matrix inverse x symmetric, positive definite !

chol(x) matrix Cholesky factorization x symmetric, positive definite !
eigen(x) matrix eigendecomposition
svd(x) matrix singular value decomposition

t(x) matrix transpose x> !

x%*%y matrix multiply xy; x, y conformant !

inprod(x, y) dot product x>y; x and y vectors !

logdet(x) log matrix determinant log |x| !

asRow(x) convert vector x to 1-row matrix sometimes automatic !

asCol(x) convert vector x to 1-column matrix sometimes automatic !

sum(x) sum of elements of x !

mean(x) mean of elements of x !

sd(x) standard deviation of elements of x !

prod(x) product of elements of x !

min(x), max(x) min. (max.) of elements of x !

pmin(x, y), pmax(x, y) vector of mins (maxs) of elements of x and y !
interp.lin(x, v1, v2) linear interpolation
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5.2.4 Available link functions

NIMBLE allows the link functions listed in Table 5.6.

Table 5.6: Link functions

Link function Description Range Inverse

cloglog(y) <- x Complementary log log 0 < y < 1 y <- icloglog(x)

log(y) <- x Log 0 < y y <- exp(x)

logit(y) <- x Logit 0 < y < 1 y <- expit(x)

probit(y) <- x Probit 0 < y < 1 y <- iprobit(x)

Link functions are specified as functions applied to a variable on the left hand side of
a BUGS expression. To handle link functions, NIMBLE does some processing that in-
serts an additional node into the model. For example, the declaration logit(p[i]) ∼
dnorm(mu[i],1), is equivalent to the follow two declarations:

• logit p[i] ∼ dnorm(mu[i], 1),
• p[i] <- expit(logit p[i])

where expit is the inverse of logit. When the BUGS expression defines a deterministic
node, such as logit(p) <- b0 + b1*x, the same operations are performed except that
logit p is a deterministic node.

Note that we do not provide an automatic way of initializing the additional node (logit p

in this case), which is a parent node of the explicit node (p[i]), without explicitly referring
to the additional node by the name that NIMBLE generates. For deterministic declarations,
this is of little import, but for stochastic declarations, it requires care.

5.2.5 Adding user-defined distributions and functions

As of Version 0.4, NIMBLE allows you to define your own functions and distributions as
nimbleFunctions for use in BUGS code. As a result, NIMBLE frees you from being con-
strained to the functions and distributions just discussed. For example, instead of setting
up a Dirichlet prior with multinomial data and needing to use MCMC, one could recognize
that this results in a Dirichlet-multinomial distribution and provide that as a user-defined
distribution instead.

Further, while NIMBLE at the moment does not allow the use of random indices, such
as is common in clustering contexts, you may be able to analytically integrate over the
random indices, resulting in a mixture distribution that you could implement as a user-
defined distribution. For example, one could implement the dnormmix distribution provided
in JAGS as a user-defined distribution in NIMBLE.
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User-defined functions

To provide a new function for use in BUGS code, simply create a nimbleFunction that has
no setup code. Then use it in your BUGS code. That’s it.

Writing nimbleFunctions requires that you declare the dimensionality of arguments and
the returned object (Section 9.5.2). Make sure that the dimensionality specified in your
nimbleFunction matches how you use it in BUGS code. For example, if you define scalar
parameters in your BUGS code you will want to define nimbleFunctions that take scalar
arguments. Here is an example that returns twice its input argument:

timesTwo <- nimbleFunction(

run = function(x = double(0)) {
returnType(double(0))

return(2*x)

})

code <- BUGScode({
for(i in 1:3) {

mu[i] ~ dnorm(0, 1)

mu_times_two[i] <- timesTwo(mu[i])

}
})

The x = double(0) argument and returnType(double(0)) establish that the input and
output will both be 0-dimensional (scalar) numbers.

You can define nimbleFunctions that take inputs and outputs with more dimensions.
Here is an example that takes a vector (1-dimensional) as input and returns a vector with
twice the input values:

vectorTimesTwo <- nimbleFunction(

run = function(x = double(1)) {
returnType(double(1))

return(2*x)

}
)

code <- BUGScode({
for(i in 1:3) {

mu[i] ~ dnorm(0, 1)

}
mu_times_two[1:3] <- vectorTimesTwo(mu[1:3])

})

There is a subtle difference between the mu times two variables in the two examples. In
the first example, there are individual nodes for each mu times two[i]. In the second ex-
ample, there is a single multivariate node, mu times two[1:3]. Each implementation could
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be more efficient for different needs. For example, suppose an algorithm modifies the value
of mu[2] and then updates nodes that depend on it. In the first example, mu times two[2]

would be updated. In the second example mu times two[1:3] would be updated because it
is a single, vector node.

At present you cannot provide a scalar argument where a nimbleFunction expects a
vector; unlike in R, scalars are not simply vectors of length 1.

User-defined distributions

To provide a user-defined distribution, you need to do the following:

1. define density (“d”) and simulation (“r”) nimbleFunctions, without setup code, for
your distribution,

2. register the distribution using registerDistributions, and
3. use your distribution in BUGS code.

You can optionally provide distribution (“p”) and quantile (“q”) functions, which will al-
low truncation to be applied to a user-defined distribution. You can also provide a list of
alternative parameterizations.

Here is an extended example of providing a univariate exponential distribution (although
this is already provided by NIMBLE) and a multivariate Dirichlet-multinomial distribution.

dmyexp <- nimbleFunction(

run = function(x = double(0), rate = double(0, default = 1),

log = integer(0, default = 0)) {
returnType(double(0))

logProb <- log(rate) - x*rate

if(log) return(logProb)

else return(exp(logProb))

})

rmyexp <- nimbleFunction(

run = function(n = integer(0), rate = double(0, default = 1)) {
returnType(double(0))

if(n != 1) print("rmyexp only allows n = 1; using n = 1.")

dev <- runif(1, 0, 1)

return(-log(1-dev) / rate)

})

pmyexp <- nimbleFunction(

run = function(q = double(0), rate = double(0, default = 1),

lower.tail = integer(0, default = 1),

log.p = integer(0, default = 0)) {
returnType(double(0))

if(!lower.tail) {
logp <- -rate * q
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if(log.p) return(logp)

else return(exp(logp))

} else {
p <- 1 - exp(-rate * q)

if(!log.p) return(p)

else return(log(p))

}
})

qmyexp <- nimbleFunction(

run = function(p = double(0), rate = double(0, default = 1),

lower.tail = integer(0, default = 1),

log.p = integer(0, default = 0)) {
returnType(double(0))

if(log.p) p <- exp(p)

if(!lower.tail) p <- 1 - p

return(-log(1 - p) / rate)

})

ddirchmulti <- nimbleFunction(

run = function(x = double(1), alpha = double(1), size = double(0),

log = integer(0)) {
returnType(double(0))

logProb <- lgamma(sum(alpha)) - sum(lgamma(alpha)) + sum(lgamma(alpha + x))

- lgamma(sum(alpha) + size)

if(log) return(logProb)

else return(exp(logProb))

})

rdirchmulti <- nimbleFunction(

run = function(n = integer(0), alpha = double(1), size = double(0)) {
returnType(double(1))

if(n != 1) print("rdirchmulti only allows n = 1; using n = 1.")

p <- rdirch(1, alpha)

return(rmulti(1, size = size, prob = p))

})

registerDistributions(list(

dmyexp = list(

BUGSdist = "dmyexp(rate, scale)",

Rdist = "dmyexp(rate = 1/scale)",

altParams = c("scale = 1/rate", "mean = 1/rate"),

pqAvail = TRUE,

range = c(0, Inf)
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),

ddirchmulti = list(

BUGSdist = "ddirchmulti(alpha, size)",

types = c('value = double(1)', 'alpha = double(1)'),

)

))

code <- BUGScode({
y[1:K] ~ ddirchmulti(alpha[1:K], n)

for(i in 1:K) {
alpha[i] ~ T(dmyexp(scale = 3), 0, 100)

}
})

The distribution-related functions should take as input the parameters for a single pa-
rameterization, which will be the canonical parameterization that NIMBLE will use. If you
would like to allow for multiple parameterizations, you can do this via the Rdist element of
the list provided to registerDistributions as illustrated. If you provide CDF (“p”) and
inverse CDF (quantile, i.e. “q”) functions, be sure to specify pqAvail = TRUE when you call
registerDistributions.

Here are more details on the requirements for distribution-related nimbleFunctions,
which follow R’s conventions:

• Your distribution-related functions must have names that begin with “d”, “r”, “p”
and “q”. The name of the distribution must not be identical to any of the NIMBLE-
provided distributions.
• The function name in the BUGSdist entry in the list provided to registerDistributions

will be the name you can use in BUGS code.
• The name of your nimbleFunctions must match the function name in the Rdist entry.

If missing, the Rdist entry defaults to be the same as the BUGSdist entry.
• All simulation (“r”) functions must take n as their first argument. Note that you may

simply have your function only handle n=1 and return an warning for other values of
n.
• Your distribution-related functions must take as arguments the parameters in default

order, starting as the second argument and in the order used in the parameterizations
in the Rdist argument to registerDistributions or the BUGSdist argument if there
are no alternative parameterizations. NIMBLE uses doubles for numerical calculations,
so we suggest simply using doubles in general, even for integer-valued parameters or
values of random variables.
• All density functions must have as their last argument log and implement return of

the log probability density. NIMBLE algorithms typically use only log = 1, but we
recommend you implement the log = 0 case for completeness.
• All distribution and quantile functions must have their last two arguments be (in

order) lower.tail and log.p. These functions must work for lower.tail = 1 (i.e.,
TRUE) and log.p = 0 (i.e., FALSE), as these are the inputs we use when working
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with truncated distributions. It is your choice whether you implement the necessary
calculations for other combinations of these inputs, but again we recommend doing so
for completeness.
• Define the nimbleFunctions in R’s global environment. Don’t expect R’s standard

scoping to work5.

Further details on using registerDistributions can be found via help(registerDistributions).
NIMBLE uses the same list format as registerDistributions to define its distributions.
This list can be found in the R/distributions inputList.R file in the package source code
directory.

5.2.6 Data and constants

NIMBLE makes a distinction between data and constants that would both be considered
“data” in BUGS and JAGS.

• Constants can never be changed and must be provided when a model is defined. For
example, a vector of known index values, such as for block indices, helps define the
model graph itself and must be provided as constants. Variables used in the index
ranges of for-loops must also be provided as constants.
• Data is a label for the role a node plays in the model. Nodes marked as data will

by default be protected from any functions that would simulate over their values (see
simulate in Chapter 9), but it is possible to over-ride that default or to change their
values by direct assignment. This allows an algorithm to be applied to many data sets
in the same model without re-creating the model each time. It also allows simulation
of data in a model.

We encourage users to distinguish between data and constants when building a model
via nimbleModel. However, for compatibility with BUGS and JAGS, NIMBLE allows both
to be provided in the the constants argument to nimbleModel, in which case NIMBLE
determines which are which, based on which variables appear on the left-hand side of BUGS
declarations.

It is also possible to have variables appear only on the right-hand side of BUGS declara-
tions (e.g., covariates/predictors). If the values of these variables will never change, one can
specify these via constants. However, one might want to define a model and then change
such values (e.g., use a model with different covariate values). Therefore one can provide
the values of such variables via the data argument to nimbleModel and these will appear as
variables in the model but will not have any corresponding nodes. A user can change these
values via direct assignment if desired.

Missing data values

Sometimes one needs a model variable to have a mix of data and non-data, often due to
missing data values. In NIMBLE, when data values are provided, any nodes with NA values

5NIMBLE can’t use R’s standard scoping because it doesn’t work for R reference classes, and
nimbleFunctions are implemented as custom-generated reference classes.
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will not be labeled as data. The result will be that nodes with non-NA values will be flagged as
data nodes, while nodes with NA values will not. A node following a multivariate distribution
must be either entirely observed or entirely missing.

Here’s an example of running an MCMC on the pump model, with two of the observa-
tions taken to be missing. Some of the steps in this example are documented more below.
NIMBLE’s default MCMC specification will treat the missing values as unknowns to be
sampled, as can be seen in the MCMC output here.

pumpMiss <- pump$newModel()

pumpMiss$resetData()

pumpDataNew <- pumpData

pumpDataNew$x[c(1, 3)] <- NA

pumpMiss$setData(pumpDataNew)

pumpMissSpec <- configureMCMC(pumpMiss)

pumpMissSpec$addMonitors(c('x', 'alpha', 'beta', 'theta'))

pumpMissMCMC <- buildMCMC(pumpMissSpec)

Cobj <- compileNimble(pumpMiss, pumpMissMCMC)

niter <- 1000

set.seed(0)

Cobj$pumpMissMCMC$run(niter)

samples <- as.matrix(Cobj$pumpMissMCMC$mvSamples)

samples[1:5, 13:17]

Missing values may also occur in variables appearing on the right-hand side of BUGS
declarations. Values for such variables should be passed in via the data argument to
nimbleModel, with NA for the missing values. In many contexts, one would want to specify
(prior) distributions for the elements with missing values.

5.2.7 Defining alternative models with the same code

Avoiding code duplication is a basic principle of good programming. In BUGS and JAGS,
if one wants to consider model variants, one needs to create complete model code for each
one. This can lead to lots of code and potential errors.

In NIMBLE, one can use definition-time if-then-else statements to create different models
from the same code. As a simple example, say we have a linear regression model and want
to consider including or omitting x[2] as an explanatory variable:

regressionCode <- nimbleCode({
intercept ~ dnorm(0, sd = 1000)

slope1 ~ dnorm(0, sd = 1000)

if(includeX2) {
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slope2 ~ dnorm(0, sd = 1000)

for(i in 1:N)

predictedY[i] <- intercept + slope1 * x1[i] + slope2 * x2[i]

} else {
for(i in 1:N) predictedY[i] <- intercept + slope1 * x1[i]

}
sigmaY ~ dunif(0, 100)

for(i in 1:N) Y[i] ~ dnorm(predictedY[i], sigmaY)

})

includeX2 <- FALSE

modelWithoutX2 <- nimbleModel(regressionCode, constants = list(N = 30),

check=FALSE)

## defining model...

## building model...

## model building finished

modelWithoutX2$getVarNames()

## [1] "intercept"

## [2] "slope1"

## [3] "predictedY"

## [4] "sigmaY"

## [5] "lifted_d1_over_sqrt_oPsigmaY_cP"

## [6] "Y"

## [7] "x1"

includeX2 <- TRUE

modelWithX2 <- nimbleModel(regressionCode, constants = list(N = 30),

check = FALSE)

## defining model...

## building model...

## model building finished

modelWithX2$getVarNames()

## [1] "intercept"

## [2] "slope1"

## [3] "slope2"

## [4] "predictedY"

## [5] "sigmaY"

## [6] "lifted_d1_over_sqrt_oPsigmaY_cP"

## [7] "Y"

## [8] "x1"

## [9] "x2"
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5.2.8 Truncation, censoring, and constraints

NIMBLE provides three ways to declare boundaries on the value of a variable, each for dif-
ferent situations. We introduce these and comment on their relationships to related features
of JAGS and BUGS. The three methods are:

Truncation

Either of the following forms,

• x ∼ dnorm(0, sd = 10) T(0, a), or
• x ∼ T(dnorm(0, sd = 10), 0, a),

declares that x follows a normal distribution between 0 and a. Either boundary may be
omitted or may be another node, such as a in this example. The first form is compatible
with JAGS, but in NIMBLE it can only be used when reading code from a text file. When
writing model code in R, the second version must be used.

Truncation means the possible values of x are limited a priori, hence the probability
density of x must be normalized. In this example it would be the normal probability density
divided by its integral from 0 to a6. Like JAGS, NIMBLE also provides I as a synonym for
T to accommodate older BUGS code, but T is preferred because it disambiguates multiple
usages of I in BUGS.

As in JAGS, mu ∼ dfoo(theta) T(L, U) restricts X to lie in [L,U ] (i.e., inclusive of L
and U).

Censoring

Censoring refers to the situation where one datum gives the lower or upper bound on an
unobserved random variable. This is common in survival analysis, when for individuals still
surviving at the end of a study, their age of death is not known and hence is “censored” (right-
censoring). NIMBLE adopts JAGS syntax for censoring, as follows (using right-censoring as
an example):

censored[i] ~ dinterval(t[i], c[i])

t[i] ~ dweib(r, mu[i])

where censored[i] should be given as data with a value of 1 if t[i] is right-censored
(t[i] > c[i]) and 0 if it is observed. The data vector for t should have NA (indicating
missing data) for any censored t[i] entries. (As a result, these nodes will be sampled in an
MCMC.) The data vector for c should give the censoring times corresponding to censored
entries and a value below the observed times for uncensored entries (e.g., 0 (assuming t[i]

> 0)). Left-censoring would be specified by setting censored[i] to 0 and t[i] to NA.
The dinterval is not really a distribution but rather a trick: in the above example

when censored[i] = 1 it gives a “probability” of 1 if t[i] > c[i] and 0 otherwise. This

6If you have a model object model, you can see exactly the calculation used by typing
model$nodes[[‘x‘]]$calculate
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means that t[i] ≤ c[i] is treated as impossible. More generally than simple right- or
left-censoring, censored[i] ∼ dinterval(t[i], c[i, ]) is defined such that for a vector
of increasing cutpoints, c[i, ], t[i] is enforced to fall within the censored[i]-th cutpoint
interval. This is done by setting data censored[i] as follows:

censored[i] = 0 if t[i] ≤ c[i, 1]

censored[i] = m if c[i, m] < t[i] ≤ c[i, m+1] for 1 <= m <= M

censored[i] = M if c[i, M] < t[i].

(The i index is provided only for consistency with the previous example.) The most common
uses of dinterval will be for left- and right-censored data, in which case c[i,] will be a
single value (and typically given as simply c[i]), and for interval-censored data, in which
case c[i,] will be a vector of two values.

Nodes following a dinterval distribution should normally be set as data with known
values. Otherwise, the node may simulated during initialization in some algorithms (e.g.,
MCMC) and thereby establish a permanent, perhaps unintended, constraint.

Censoring differs from truncation because censoring an observation involves bounds on a
random variable that could have taken any value, while in truncation we know a priori that
a datum could not have occurred outside the truncation range.

Constraints and ordering

NIMBLE provides a more general way to enforce constraints using dconstraint(cond). For
example, we could specify that the sum of mu1 and mu2 must be positive like this:

mu1 ~ dnorm(0, 1)

mu2 ~ dnorm(0, 1)

constraint_data ~ dconstraint( mu1 + mu2 > 0 )

with constraint data set (as data) to 1. This is equivalent to a half-normal distribu-
tion on the half-plane µ1 + µ2 > 0. However, note that this equivalence only holds when
conditioning on constraint data (e.g., in an MCMC) and not when simulating from the
model using simulate. Nodes following dconstraint should be provided as data for the
same reason of avoiding unintended initialization described above for dinterval.

Formally, dconstraint(condition) is a probability distribution on {0, 1} such that
P (1) = 1 if cond is TRUE and P (0) = 1 if cond is FALSE.

Of course, in many cases, parameterizing the model so that the constraints are automat-
ically respected may be a better strategy than using dconstraint. One should be cautious
about constraints that would make it hard for an MCMC or optimization to move through
the parameter space (such as equality constraints that involve two or more parameters).
For such restrictive constraints, general purpose algorithms that are not tailored to the con-
straints may fail or be inefficient. If constraints are used, it will generally be wise to ensure
the model is initialized with values that satisfy them.
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Ordering To specify an ordering of parameters, such as α1 <= α2 <= α3 one can use
dconstraint as follows:

constraint_data ~ dconstraint( alpha1 <= alpha2 & alpha2 <= alpha3 )

Note that unlike in BUGS, one cannot specify prior ordering using syntax such as

alpha[1] ~ dnorm(0, 1) I(, alpha[2])

alpha[2] ~ dnorm(0, 1) I(alpha[1], alpha[3])

alpha[3] ~ dnorm(0, 1) I(alpha[2], )

as this does not represent a directed acyclic graph.
Also note that specifying prior ordering using T(,) can result in possibly unexpected

results. For example:

alpha1 ~ dnorm(0, 1)

alpha2 ~ dnorm(0, 1) T(alpha1, )

alpha3 ~ dnorm(0, 1) T(alpha2, )

will enforce alpha1 ≤ alpha2 ≤ alpha3, but it does not treat the three parameters sym-
metrically. Instead it puts a marginal prior on alpha1 that is standard normal and then
constrains alpha2 and alpha3 to follow truncated normal distributions. This is not equiva-
lent to a symmetric prior on the three alphas that assigns 0 probability density when values
are not in order.

NIMBLE does not support the JAGS sort syntax.

5.2.9 Understanding lifted nodes

In some cases, NIMBLE introduces new nodes into the model that were not specified in
the BUGS code for the model, such as the lifted d1 over beta node in the introductory
example. For this reason, it is important that programs written to adapt to different model
structures use NIMBLE’s systems for querying the model graph. For example, a call to
pump$getDependencies("beta") will correctly include lifted d1 over beta in the results.
If one skips this step and assumes the nodes are only those that appear in the BUGS code,
one may not get correct results.

It can be helpful to know the situations in which lifted nodes are generated. These
include:

• When distribution parameters are expressions, NIMBLE creates a new deterministic
node that contains the expression for a given parameter. The node is then a direct
descendant of the new deterministic node. This is an optional feature, but it is currently
enabled in all cases.
• As discussed in Section 5.2.4 the use of link functions causes new nodes to be intro-

duced. This requires care if you need to initialize values in stochastic declarations with
link functions.
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• Use of alternative parameterizations of distributions, described in Section 5.2.2. For
example when a user provides the precision of a normal distribution as tau, NIMBLE
creates a new node sd <- 1/sqrt(tau) and uses sd as a parameter in the normal
distribution. If many nodes use the same tau, only one new sd node will be created,
so the computation 1/sqrt(tau) will not be repeated redundantly.

5.3 Creating model objects

NIMBLE provides two functions for creating model objects: nimbleModel and readBUGSmodel.
The first, nimbleModel, is the primary way to create models and was illustrated in Chapter
2. The second, readBUGSmodel provides compatibility with BUGS file formats for models,
variables, data, and initial values for MCMC.

NIMBLE also provides some additional flexibility in setting data in a model and in
defining multiple models from the same model definition, as described at the end of this
section.

5.3.1 Using nimbleModel to specify a model

The R help page (?nimbleModel) provides more details on nimbleModel arguments.

5.3.2 Specifying a model from standard BUGS and JAGS input
files

Users with BUGS and JAGS experience may have files set up in standard formats for use in
BUGS and JAGS. readBUGSmodel can read in the model, data/constant values and initial
values in those formats. It can also take information directly from R objects somewhat
more flexibly than nimbleModel, specifically allowing inputs set up similarly to those for
BUGS and JAGS. In either case, after processing the inputs, it calls nimbleModel. Note
that unlike BUGS and JAGS, only a single set of initial values can be specified in creating
a model. Please see help(readBUGSmodel) for argument details.

As an example of using readBUGSmodel, let’s create a model for the pump example from
BUGS.

pumpDir <- system.file('classic-bugs', 'vol1', 'pump', package = 'nimble')

pumpModel <- readBUGSmodel('pump.bug', data = 'pump-data.R',

inits = 'pump-init.R', dir = pumpDir)

## defining model...

## Detected x as data within 'constants'.

## Adding x as data for building model.

## building model...

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## model building finished
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Note that readBUGSmodel allows one to include var and data blocks in the model file as
in some of the BUGS examples (such as inhaler). The data block pre-computes constant
and data values. Also note that if data and inits are provided as files, the files should
contain R code that creates objects analogous to what would populate the list if a list were
provided instead. Please see the JAGS manual examples or the classic bugs directory in the
NIMBLE package for example syntax. NIMBLE by and large does not need the information
given in a var block but occasionally this is used to determine dimensionality, such as in
the case of syntax like xbar <- mean(x[]) where x is a variable that appears only on the
right-hand side of BUGS expressions.

Note that NIMBLE does not handle formatting such as in some of the original BUGS
examples in which data was indicated with syntax such as data x in ‘x.txt’.

5.3.3 Providing data via setData

Whereas the constants are a property of the model definition – since they may help determine
the model structure itself – data nodes can be different in different copies of the model
generated from the same model definition. For this reason, data is not required to be provided
when the model code is processed. It can be provided later via the model member function
setData. e.g., pump$setData(pumpData), where pumpData is a named list of data values.

setData does two things: it sets the values of the data nodes, and it flags those nodes
as containing data. nimbleFunction programmers can then use that information to control
whether an algorithm should over-write data or not. For example, NIMBLE’s simulate

functions by default do not overwrite data values but can be told to do so. Values of data
variables can be replaced, and the indication of which nodes should be treated as data can
be reset by using the resetData method, e.g. pump$resetData().

5.3.4 Making multiple instances from the same model definition

Sometimes it is useful to have more than one copy of the same model. For example,
nimbleFunctions are often bound to a particular model as a result of setup code. A
user could build multiple algorithms to use the same model instance, or they may want each
algorithm to have its own instance of the model.

There are two ways to create new instances of a model, shown in this example:

simpleCode <- nimbleCode({
for(i in 1:N) x[i] ~ dnorm(0, 1)

})

## Return the model definition only, not a built model

simpleModelDefinition <- nimbleModel(simpleCode, constants = list(N = 10),

returnDef = TRUE, check = FALSE)

## defining model...

## Make one instance of the model
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simpleModelCopy1 <- simpleModelDefinition$newModel(check = FALSE)

## Make another instance from the same definition

simpleModelCopy2 <- simpleModelDefinition$newModel(check = FALSE)

## Ask simpleModelCopy2 for another copy of itself

simpleModelCopy3 <- simpleModelCopy2$newModel(check = FALSE)

Each copy of the model can have different nodes flagged as data and different values in
any nodes. They cannot have different values of N because that is a constant; it must be a
constant because it helps define the model.



Chapter 6

Using NIMBLE models from R

6.1 Some basic concepts and terminology

Before going further, we need some basic concepts and terminology to be able to speak about
NIMBLE clearly.

Say we have the following BUGS code

mc <- nimbleCode({
a ~ dnorm(0, 0.001)

for(i in 1:5) {
y[i] ~ dnorm(a, 0.1)

for(j in 1:3)

z[i,j] ~ dnorm(y[i], sd = 0.1)

}
y.squared[1:5] <- y[1:5]^2

})

model <- nimbleModel(mc, data = list(z = matrix(rnorm(15), nrow = 5)),

check = FALSE)

## defining model...

## building model...

## setting data and initial values...

## model building finished

In NIMBLE terminology:

• The variables of this model are a, y, z, and y.squared.
• The nodes of this model are a, y[1] . . . y[5], z[1,1] . . . z[5, 3], and y.squared[1:5].

In graph terminology, nodes are vertices in the model graph.
• the node functions of this model are a ~ dnorm(0, 0.001), y[i] ~ dnorm(a, 0.1),
z[i,j] ~ dnorm(y[i], sd = 0.1), and y.squared[1:5] <- y[1:5]^2. Each node
has a corresponding node function. Sometimes the distinction between nodes and node

51
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functions is important, but when it is not important we may refer to both simply as
nodes.
• The scalar elements of this model include all the scalar nodes as well as the scalar

elements y.squared[1] . . . y.squared[5] of the multivariate node y.squared[1:5].

6.2 Accessing variables

Model variables can be accessed and set just as in R using $ and [[ ]]. For example

model$a <- 5

model$a

## [1] 5

model[['a']]

## [1] 5

model$y[2:4] <- rnorm(3)

model$y

## [1] NA -0.6545846 1.7672873 0.7167075 NA

model[['y']][c(1, 5)] <- rnorm(2)

model$y

## [1] 0.9101742 -0.6545846 1.7672873 0.7167075 0.3841854

model$z[1,]

## [1] 0.2670988 1.5868335 -0.4734006

6.2.1 Accessing log probabilities via logProb variables

For each variable that contains at least one stochastic node, NIMBLE generates a model
variable with the prefix “logProb ”. When the stochastic node is scalar, the logProb variable
will have the same size. For example:

model$logProb_y

## [1] NA NA NA NA NA

calculate(model, 'y')

## [1] -15.29134
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model$logProb_y

## [1] -2.906565 -3.668947 -2.592753 -2.987561 -3.135518

Creation of logProb variables for stochastic multivariate nodes is trickier, because they
can represent an arbitrary block of a larger variable. In general NIMBLE records the logProb
values using the lowest possible indices. For example, if x[5:10, 15:20] follows a Wishart
distribution, its log probability (density) value will be stored in logProb x[5, 15]. When
possible, NIMBLE will reduce the dimensions of the corresponding logProb variable. For
example, in

for(i in 1:10) x[i,] ~ dmnorm(mu[], prec[,])

x may be 10×20 (dimensions must be provided), but logProb x will be 10×1. For the
most part you do not need to worry about how NIMBLE is storing the log probability values,
because you can always get them using getLogProb.

6.3 Accessing nodes

While nodes that are part of a variable can be accessed as above, each node also has its own
name that can be used to access it directly. For example, y[2] has the name “y[2]” and can
be accessed by that name as follows:

model[['y[2]']]

## [1] -0.6545846

model[['y[2]']] <- -5

model$y

## [1] 0.9101742 -5.0000000 1.7672873 0.7167075 0.3841854

model[['z[2, 3]']]

## [1] -0.6203667

model[['z[2:4, 1:2]']][1, 2]

## [1] 0.5584864

model$z[2, 2]

## [1] 0.5584864

Notice that node names can include index blocks, such as model[[‘z[2:4, 1:2]’]], and
these are not strictly required to correspond to actual nodes. Such blocks can be subsequently
sub-indexed in the regular R manner.
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6.3.1 How nodes are named

Every node has a name that is a character string including its indices, with a space after every
comma. For example, X[1, 2, 3] has the name “X[1, 2, 3]”. Nodes following multivariate
distributions have names that include their index blocks. For example, a multivariate node
for X[6:10, 3] has the name “X[6:10, 3]”.

The definitive source for node names in a model is getNodeNames, described below. For
example

multiVarCode <- nimbleCode({
X[1, 1:5] ~ dmnorm(mu[], cov[,])

X[6:10, 3] ~ dmnorm(mu[], cov[,])

})

multiVarModel <- nimbleModel(multiVarCode, dimensions = list(mu = 5, cov = c(5,5)),

check = FALSE)

## defining model...

## building model...

## model building finished

multiVarModel$getNodeNames()

## [1] "lifted_chol_oPcov_oB1to5_1to5_cB_cP[1:5, 1:5]"

## [2] "X[1, 1:5]"

## [3] "X[6:10, 3]"

You can see one lifted node for the Cholesky decomposition of cov, and the two multi-
variate normal nodes.

In the event you need to ensure that a name is formatted correctly, you can use the
expandNodeNames method. For example, to get the spaces correctly inserted into “X[1,1:5]”:

multiVarModel$expandNodeNames("X[1,1:5]")

## [1] "X[1, 1:5]"

Alternatively, for those inclined to R’s less commonly used features, a nice trick is to use
its parse and deparse functions.

deparse(parse(text = "X[1,1:5]", keep.source = FALSE)[[1]])

## [1] "X[1, 1:5]"

The keep.source = FALSE makes parse more efficient.
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6.3.2 Why use node names?

Syntax like pump[["x[2, 3]"]] may seem strange at first, because the natural habit of an
R user would be pump[["x"]][2,3]. To see its utility, consider the example of writing the
nimbleFunction given in Section 2.7. By giving every scalar node a name, even if it is part of
a multivariate variable, one can write functions in R or NIMBLE that access any single node
by a name, regardless of the dimensionality of the variable in which it is embedded. This is
particularly useful for NIMBLE, which resolves how to access a particular node during the
compilation process.

6.4 calculate, simulate, and getLogProb

The four basic ways to operate a model are to calculate nodes, simulate into nodes, get the
log probabilities (or probability densities) that have already been calculated, and compare
the log probability of a new value to that of an old value. In more detail:

calculate For a stochastic node, calculate determines the log probability value, stores it in
the appropriate logProb variable, and returns it. For a deterministic node, calculate
executes the deterministic calculation and returns 0.

simulate For a stochastic node, simulate generates a random draw. For deterministic
nodes, simulate is equivalent to calculate without returning 0. simulate always
returns NULL (or void in C++).

getLogProb getLogProb simply returns the most recently calculated log probability value,
or 0 for a deterministic node.

calculateDiff calculateDiff is identical to calculate, but it returns the new log proba-
bility value minus the one that was previously stored. This is useful when one wants
to change the value or values of node(s) in the model (e.g., by setting a value or
simulate) and then determine the change in the log probability, such as needed for a
Metropolis-Hastings acceptance probability.

There are two ways to access calculate, calculateDiff, simulate, and getLogProb.
The primary way is via the functions with those names, which accept arbitrary collections
of nodes as input. In that case, calculate and getLogProb return the sum of the log
probabilities from each node, while calculateDiff returns the sum of the new values minus
the old values. The other way is to directly access the corresponding function for each node
in a model. Normally you’ll use the first way, but we’ll show you both.

6.4.1 For arbitrary collections of nodes

model$y

## [1] 0.9101742 -5.0000000 1.7672873 0.7167075 0.3841854

simulate(model, 'y[1:3]')

model$y



CHAPTER 6. USING NIMBLE MODELS FROM R 56

## [1] 10.3195078 2.9896248 3.5401512 0.7167075 0.3841854

simulate(model, 'y')

model$y

## [1] 9.529274 3.393389 4.344205 3.757832 3.988094

model$z

## [,1] [,2] [,3]

## [1,] 0.2670988 1.5868335 -0.47340064

## [2,] -0.5425200 0.5584864 -0.62036668

## [3,] 1.2078678 -1.2765922 0.04211587

## [4,] 1.1604026 -0.5732654 -0.91092165

## [5,] 0.7002136 -1.2246126 0.15802877

simulate(model, c('y[1:3]', 'z[1:5, 1:3]'))

model$y

## [1] 4.117366 6.562761 4.439232 3.757832 3.988094

model$z

## [,1] [,2] [,3]

## [1,] 0.2670988 1.5868335 -0.47340064

## [2,] -0.5425200 0.5584864 -0.62036668

## [3,] 1.2078678 -1.2765922 0.04211587

## [4,] 1.1604026 -0.5732654 -0.91092165

## [5,] 0.7002136 -1.2246126 0.15802877

simulate(model, c('z[1:5, 1:3]'), includeData = TRUE)

model$z

## [,1] [,2] [,3]

## [1,] 4.066770 4.251670 4.095908

## [2,] 6.544805 6.552742 6.634027

## [3,] 4.431875 4.435468 4.371066

## [4,] 3.725405 3.763848 3.698943

## [5,] 4.041243 3.836254 4.018749

Notice the following.

1. Inputs like ‘y[1:3]’ are automatically expanded into c(‘y[1]’, ‘y[2]’, ‘y[3]’).
In fact, simply ‘y’ will be expanded into all nodes within y.

2. An arbitrary number of nodes can be provided as a character vector.
3. Simulations will be done in the order provided, so in practice the nodes should often
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be obtained by functions like getDependencies described below. These return nodes
in topologically sorted order, which means no node comes before something it depends
on.

4. The data nodes z were not simulated into until includeData = TRUE was used.

Use of calculate, calculateDiff and getLogProb are similar to simulate, except that
they return a value (described above) and they have no includeData argument.

6.4.2 Direct access to each node’s functions

Access to the underlying calculate, calculateDiff, simulate, and getLogProb functions
built by NIMBLE can be had as follows:

y2lp <- model$nodes[['y[2]']]$calculate()

y2lp

## [1] -2.192342

model$nodes[['y[2]']]$getLogProb()

## [1] -2.192342

6.5 Querying model structure

NIMBLE provides functions for asking a model about its structure. These can be used from
R, including from the setup code of a nimbleFunction (setup code is described in Chapter
9).

Here we demonstrate this functionality using the pump example because it has a few
more interesting components than the example above.

## defining model...

## building model...

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## model building finished

6.5.1 getNodeNames, getVarNames, and expandNodeNames

First we’ll see how to determine the nodes and variables in a model.

pump$getNodeNames()
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## [1] "alpha" "beta"

## [3] "lifted_d1_over_beta" "theta[1]"

## [5] "theta[2]" "theta[3]"

## [7] "theta[4]" "theta[5]"

## [9] "theta[6]" "theta[7]"

## [11] "theta[8]" "theta[9]"

## [13] "theta[10]" "lambda[1]"

## [15] "lambda[2]" "lambda[3]"

## [17] "lambda[4]" "lambda[5]"

## [19] "lambda[6]" "lambda[7]"

## [21] "lambda[8]" "lambda[9]"

## [23] "lambda[10]" "x[1]"

## [25] "x[2]" "x[3]"

## [27] "x[4]" "x[5]"

## [29] "x[6]" "x[7]"

## [31] "x[8]" "x[9]"

## [33] "x[10]"

pump$getNodeNames(determOnly = TRUE)

## [1] "lifted_d1_over_beta" "lambda[1]"

## [3] "lambda[2]" "lambda[3]"

## [5] "lambda[4]" "lambda[5]"

## [7] "lambda[6]" "lambda[7]"

## [9] "lambda[8]" "lambda[9]"

## [11] "lambda[10]"

pump$getNodeNames(stochOnly = TRUE)

## [1] "alpha" "beta" "theta[1]" "theta[2]" "theta[3]"

## [6] "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"

## [11] "theta[9]" "theta[10]" "x[1]" "x[2]" "x[3]"

## [16] "x[4]" "x[5]" "x[6]" "x[7]" "x[8]"

## [21] "x[9]" "x[10]"

pump$getNodeNames(dataOnly = TRUE)

## [1] "x[1]" "x[2]" "x[3]" "x[4]" "x[5]" "x[6]" "x[7]"

## [8] "x[8]" "x[9]" "x[10]"

pump$getVarNames()

## [1] "lifted_d1_over_beta" "theta"

## [3] "lambda" "x"

## [5] "alpha" "beta"
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Note that some of the nodes may be “lifted” nodes introduced by NIMBLE (Section
5.2.9).

Next note that we can determine the set of nodes contained in one or more nodes or
variables using expandNodeNames. The returnScalarComponents argument also allows us
to return all of the scalar components of multivariate nodes. to illustrate.

multiVarCode2 <- nimbleCode({
X[1, 1:5] ~ dmnorm(mu[], cov[,])

X[6:10, 3] ~ dmnorm(mu[], cov[,])

for(i in 1:4)

Y[i] ~ dnorm(mn, 1)

})

multiVarModel2 <- nimbleModel(multiVarCode2, dimensions = list(mu = 5, cov = c(5,5)),

check = FALSE)

## defining model...

## building model...

## model building finished

multiVarModel2$expandNodeNames('Y')

## [1] "Y[1]" "Y[2]" "Y[3]" "Y[4]"

multiVarModel2$expandNodeNames(c('X', 'Y'), returnScalarComponents = TRUE)

## [1] "X[1, 1]" "X[1, 2]" "X[1, 3]" "X[6, 3]" "X[7, 3]"

## [6] "X[8, 3]" "X[9, 3]" "X[10, 3]" "X[1, 4]" "X[1, 5]"

## [11] "Y[1]" "Y[2]" "Y[3]" "Y[4]"

6.5.2 getDependencies

Next we’ll see how to determine the node dependencies (or “descendents”) in a model. There
are a variety of arguments to getDependencies that allow one to specify whether to include
the node itself, whether to include deterministic or stochastic or data dependents, etc. By
default getDependencies returns descendants up to the next stochastic node on all edges
emanating from the node(s) specified as input. This is what would be needed to calculate a
Metropolis-Hastings acceptance probability in MCMC, for example.

pump$getDependencies('alpha')

## [1] "alpha" "theta[1]" "theta[2]" "theta[3]" "theta[4]"

## [6] "theta[5]" "theta[6]" "theta[7]" "theta[8]" "theta[9]"

## [11] "theta[10]"
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pump$getDependencies(c('alpha', 'beta'))

## [1] "alpha" "beta"

## [3] "lifted_d1_over_beta" "theta[1]"

## [5] "theta[2]" "theta[3]"

## [7] "theta[4]" "theta[5]"

## [9] "theta[6]" "theta[7]"

## [11] "theta[8]" "theta[9]"

## [13] "theta[10]"

pump$getDependencies('theta[1:3]', self = FALSE)

## [1] "lambda[1]" "lambda[2]" "lambda[3]" "x[1]" "x[2]"

## [6] "x[3]"

pump$getDependencies('theta[1:3]', stochOnly = TRUE, self = FALSE)

## [1] "x[1]" "x[2]" "x[3]"

# get all dependencies, not just the direct descendants

pump$getDependencies('alpha', downstream = TRUE)

## [1] "alpha" "theta[1]" "theta[2]" "theta[3]"

## [5] "theta[4]" "theta[5]" "theta[6]" "theta[7]"

## [9] "theta[8]" "theta[9]" "theta[10]" "lambda[1]"

## [13] "lambda[2]" "lambda[3]" "lambda[4]" "lambda[5]"

## [17] "lambda[6]" "lambda[7]" "lambda[8]" "lambda[9]"

## [21] "lambda[10]" "x[1]" "x[2]" "x[3]"

## [25] "x[4]" "x[5]" "x[6]" "x[7]"

## [29] "x[8]" "x[9]" "x[10]"

pump$getDependencies('alpha', downstream = TRUE, dataOnly = TRUE)

## [1] "x[1]" "x[2]" "x[3]" "x[4]" "x[5]" "x[6]" "x[7]"

## [8] "x[8]" "x[9]" "x[10]"

6.5.3 isData

Finally, you can query whether a node is flagged as data using the isData method applied
to one or more nodes:

pump$isData('x[1]')

## [1] TRUE
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pump$isData(c('x[1]', 'x[2]', 'alpha'))

## [1] TRUE TRUE FALSE

You can also query variables to determine if the nodes that are part of a variable are
data nodes.

pump$isData('x')

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

pump$isData('x[1:3]')

## [1] TRUE TRUE TRUE

6.6 The modelValues data structure

modelValues are containers designed for storing values for models. They may be used for
model outputs or model inputs. A modelValues object will contain rows of variables. Each
row contains one object of each variable, which may be multivariate. The simplest way to
build a modelValues object is from a model object. This will create a modelValues object
with the same variables as the model. Although they were motivated by models, one is free
to set up a modelValues with any variables one wants.

pumpModelValues = modelValues(pumpModel, m = 2)

pumpModel$x

## [1] 5 1 5 14 3 19 1 1 4 22

pumpModelValues$x

## [[1]]

## [1] NA NA NA NA NA NA NA NA NA NA

##

## [[2]]

## [1] NA NA NA NA NA NA NA NA NA NA

In this example, pumpModelValues has the same variables as pumpModel, and we set
pumpModelValues to have m = 2 rows. As you can see, the rows are stored as elements of a
list.

Alternatively, one can define a modelValues object manually via the modelValuesSpec

function, like this:
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mvSpec = modelValuesSpec(vars = c('a', 'b', 'c'),

type = c('double', 'int', 'double'),

size = list( a = 2, b =c(2,2) , c = 1) )

customMV = modelValues(mvSpec, m = 2 )

customMV$a

## [[1]]

## [1] NA NA

##

## [[2]]

## [1] NA NA

The arguments to modelValuesSpec are matching lists of variable names, types, and
sizes. See help(modelValuesSpec) for more details. Note that in R execution, the types
are not enforced. But they will be the types created in C++ code during compilation, so
they should be specified carefully.

The object returned by modelValues is an uncompiled modelValues. When a nimble-
Function is compiled, any modelValues objects it uses are also compiled. A NIMBLE model
always contains a modelValues that it uses as a default location to store its variables.

Here is an example where the customMV created above is used as the setup argument for
a nimbleFunction, which is then compiled. Its compiled mv is then accessed with $.

# Simple nimbleFunction that uses a modelValues object

resizeFunction_Gen <- nimbleFunction(

setup = function(mv){},
run = function(k = integer() ){

resize(mv,k)})

rResize <- resizeFunction_Gen(customMV)

cResize <- compileNimble(rResize)

cCustomMV <- cResize$mv

# cCustomMV is a C++ modelValues object

Compiled modelValues objects can be accessed and altered in all the same ways as un-
compiled ones. However, only uncompiled modelValues can be used as arguments to setup
code in nimbleFunctions.

6.6.1 Accessing contents of modelValues

The values in a modelValues object can be accessed in several ways from R, and in fewer
ways from NIMBLE.
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# Sets the first row of a to (0, 1). R only.

customMV[['a']][[1]] <- c(0,1)

# Sets the second row of a to (2, 3)

customMV['a', 2] <- c(2,3)

#Can access subsets of each row in standard R manner

customMV['a', 2][2] <- 4

# Accesses all values of 'a'. Output is a list. R only.

customMV[['a']]

## [[1]]

## [1] 0 1

##

## [[2]]

## [1] 2 4

# Sets the first row of b to a matrix with values 1. R only.

customMV[['b']][[1]] <- matrix(1, nrow = 2, ncol = 2)

# Sets the second row of b. R only.

customMV[['b']][[2]] <- matrix(2, nrow = 2, ncol = 2)

# Make sure the size of inputs is correct

# customMV['a', 1] <- 1:10

# Problem: dimension of 'a' is 2, not 10!

# Will cause problems when compiling nimbleFunction using customMV

Currently, only the syntax customMV[‘a’, 2] works in the NIMBLE language, not
customMV[[‘a’]][[2]]. Also note that c() does not work in NIMBLE, but one can do
customMV[‘a’, 2] <- X[1:2].

We can query and change the number of rows using getsize and resize, respectively.
These work in both R and NIMBLE. Note that we don’t specify the variables in this case:
all variables in a modelValues object will have the same number of rows.

getsize(customMV)

## [1] 2

resize(customMV, 3)

getsize(customMV)

## [1] 3

customMV$a
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## [[1]]

## [1] 0 1

##

## [[2]]

## [1] 2 4

##

## [[3]]

## [1] NA NA

Often it is useful to convert a modelValues object to a matrix for use in R. For example,
we may want to convert MCMC output into a matrix for use with the coda package for
processing MCMC samples. This can be done with the as.matrix method for modelValues
objects. This will generate column names from every scalar element of variables (e.g. ”x[1,
1]” ,”x[2, 1]”, etc.). The rows of the modelValues will be the rows of the matrix, with any
matrices or arrays converted to a vector based on column-major ordering.

as.matrix(customMV, 'a') # convert 'a'

## a[1] a[2]

## [1,] 0 1

## [2,] 2 4

## [3,] NA NA

as.matrix(customMV) # convert all variables

## a[1] a[2] b[1, 1] b[2, 1] b[1, 2] b[2, 2] c[1]

## [1,] 0 1 1 1 1 1 NA

## [2,] 2 4 2 2 2 2 NA

## [3,] NA NA NA NA NA NA NA

If a variable is a scalar, using unlist in R to extract all rows as a vector can be useful.

customMV['c', 1] <- 1

customMV['c', 2] <- 2

customMV['c', 3] <- 3

unlist(customMV['c', ])

## [1] 1 2 3

Once we have a modelValues object, we can see the structure of its contents via the
varNames and sizes components of the object.

customMV$varNames

## [1] "a" "b" "c"
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customMV$sizes

## $a

## [1] 2

##

## $b

## [1] 2 2

##

## $c

## [1] 1

As with most NIMBLE objects, modelValues are passed by reference, not by value. That
means any modifications of modelValues objects in either R functions or nimbleFunctions
will persist outside of the function. This allows for more efficient computation, as stored
values are immediately shared among nimbleFunctions.

alter_a <- function(mv){
mv['a',1][1] <- 1

}
customMV['a', 1]

## [1] 0 1

alter_a(customMV)

customMV['a',1]

## [1] 1 1

#Note that the first row was changed

However, when you retrieve a variable from a modelValues object, the result is a standard
R list, which is subsequently passed by value, as usual in R.

6.7 NIMBLE passes objects by reference

NIMBLE relies heavily on R’s reference class system. When models, modelValues, and nim-
bleFunctions with setup code are created, NIMBLE generates a new, customized reference
class definition for each. As a result, objects of these types are passed by reference and hence
modified in place by most NIMBLE operations. This is necessary to avoid a great deal of
copying and returning and having to reassign large objects, both in processing model and
nimbleFunctions and in running algorithms.

One cannot generally copy NIMBLE models or nimbleFunctions (specializations or gener-
ators) in a safe fashion, because of the references to other objects embedded within NIMBLE
objects. However, the model member function newModel will create a new copy of the model
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from the same model definition (Section 5.3.4). This new model can then be used with newly
instantiated nimbleFunctions.

The reliable way to create new copies of nimbleFunctions is to re-run the R function
called nimbleFunction and record the result in a new object. For example, say you have a
nimbleFunction called foo and 1000 instances of foo are compiled as part of an algorithm
related to a model called model1. If you then need to use foo in an algorithm for another
model, model2, doing so may work without any problems. However, there are cases where
the NIMBLE compiler will tell you during compilation that the second set of foo instances
cannot be built from the previous compiled version. A solution is to re-define foo from the
beginning – i.e. call nimbleFunction again – and then proceed with building and compiling
the algorithm for model2.



Chapter 7

MCMC

Using the MCMC engine provided with NIMBLE consists of several steps:

• Building an MCMC function specialized to a particular model. This can be done in
one step, but when a user wants to customize the MCMC, it can be done in several
steps:

– Creating an MCMC configuration consisting of a set of sampler choices;
– Customizing the sampler choices in the configuration, which may include provid-

ing new samplers written as nimbleFunctions; and
– Building the MCMC function from the configuration.

• Compiling and running the MCMC function.
• Extracting the posterior samples.

This chapter also discusses:

• Sampling algorithms provided with NIMBLE.
• Default sampler assignments in an MCMC configuration.
• Writing new samplers that conform to NIMBLE’s MCMC system.
• Using MCMCsuite to automatically run WinBUGS, JAGS, Stan and/or multiple NIM-

BLE MCMCs on the same model.1

• Using NIMBLE’s algorithm to search blocks of nodes for efficient joint (block) sampling.

7.1 The MCMC configuration

The MCMC configuration contains information needed for building an MCMC. We will show
how to create this information as a first step so it can be customized before moving ahead,
but when no customization is needed one can jump directly to the buildMCMC step below.
An MCMC configuration includes:

• The model on which the MCMC will operate
• The model nodes which will be sampled (updated) during execution of the MCMC

1We haven’t added OpenBUGS support yet.

67
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• The particular sampling algorithms for each of these nodes, including any control
parameters required by each sampling algorithm
• Two sets of variables that will be monitored (recorded) during execution of the MCMC

and thinning intervals for how often each set will be recorded. Two sets are allowed
because it can be useful to monitor different variables at different intervals.

7.1.1 Default MCMC configuration

Assuming we have a model named Rmodel, the following will generate a default MCMC
configuration:

mcmcspec <- configureMCMC(Rmodel)

The default configuration will contain a single sampler for each node in the model, and
the default ordering follows the topological ordering of the model. configureMCMC creates an
MCMCspec reference class object. The MCMCspec reference class has a number of methods,
such as addSampler that are described later.

Default assignment of sampler algorithms

The default sampling algorithm assigned to each stochastic node is determined by the fol-
lowing, in order of precedence:

1. If the node has no stochastic dependents, a predictive end sampler is assigned. The
end sampling algorithm merely calls simulate on the particular node.

2. The node is checked for presence of a conjugate relationship between its prior distri-
bution and the distributions of its stochastic dependents. If it is determined to be in a
conjugate relationship, then the corresponding conjugate (Gibbs) sampler is assigned.

3. If the node is discrete-valued, then a slice sampler is assigned [4].
4. If the node follows a multivariate distribution, then a RW block sampler is assigned

for all elements. This is a Metropolis-Hastings adaptive random-walk sampler with a
multivariate normal proposal [5].

5. If none of the above criteria are satisfied, then a RW sampler is assigned. This is a
Metropolis-Hastings adaptive random-walk sampler with a univariate normal proposal
distribution.

The control parameters governing each of the default sampling algorithms are defined in
the NIMBLE system option MCMCcontrolDefaultList. These default values are described
in Section 7.5, along with the related sampling algorithms.

Modifying the default sampler assignments

configureMCMC accepts control arguments useConjugacy, onlyRW, onlySlice, and
multivariateNodesAsScalars to modify default sampler assignments.

See help(configureMCMC) for usage details.
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Default monitors

The default MCMC configuration includes monitors on all top-level stochastic nodes of the
model.

Automated parameter blocking

The default configuration may be replaced by that generated from an automated parameter
blocking algorithm. This algorithm determines groupings of model nodes that, when jointly
sampled with a RW block sampler, increase overall MCMC efficiency. Overall efficiency is
defined as the effective sample size of the slowest-mixing node divided by computation time.
This is done by:

autoBlockSpec <- configureMCMC(Rmodel, autoBlock = TRUE)

In this usage, the additional control argument autoIt may also be provided to indicate the
number of MCMC samples to be used in the automated blocking procedure (default 20,000).
Note that this function compiles and runs MCMCs, progressively exploring different sampler
assignments, so it takes some time and generates some output.

7.1.2 Customizing the MCMC configuration

The MCMC configuration may be customized in a variety of ways, either through additional
named arguments to configureMCMC or by calling member methods of an existing MCMCspec

object.

Default samplers for particular nodes

One can create an MCMC configuration with default samplers on just a particular set of
nodes using the nodes argument to configureMCMC. The value for the nodes argument may
be a character vector containing node and/or variable names. In the case of a variable name,
a default sampler will be added for all stochastic nodes in the variable.

If the nodes argument is provided, default samplers are created only for the stochastic
nodes specified by this argument (possibly including data nodes), and the ordering of these
sampling algorithms matches the ordering within the nodes argument. It is worthwhile to
note this is the only way in which a sampler may be placed on a data node, which upon
execution of the MCMC will overwrite any value stored in the data node.

Creating a configuration with no samplers

If you plan to customize the choice of all samplers, it can be useful to obtain a configuration
with no sampler assignments at all. This can be done by providing the nodes argument with
the value NULL, character(), or list().
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Overriding the default sampler control list values

The default values of control list elements for all sampling algorithms may be overridden
through use of the control argument to configureMCMC, which should be a named list.
Named elements in the control argument will be used for all default samplers added. In
addition, they are retained in the MCMCspec object, and will be used as defaults for any
subsequent samplers added to this same MCMCspec object. For example, the following will
create the default MCMC configuration, except all RW samplers will have their initial scale
set to 3, and none of the samplers (RW, or otherwise) will be adaptive.

mcmcspec <- configureMCMC(Rmodel, control = list(scale = 3, adaptive = FALSE))

Note that when adding individual samplers (next), the default control list can be over-
ridden.

Adding samplers to the configuration

Samplers may be added to a configuration using the addSampler method of the MCMCspec

object. The frst argument gives the node(s) to be sampled, called the target, as a char-
acter vector. The second argument gives the types of sampler, which may be provided
as a character string or a nimbleFunction object. Valid character strings include ‘end’,
‘RW’, ‘RW block’, ‘slice’, ‘crossLevel’, and ‘RW llFunction’, which are described below. Re-
quirements for writing a nimbleFunction that can be used as a sampler are also described
below, and new samplers can be labeled with a name argument, which is used in output of
getSamplers.

When a control argument is provided in a call to addSampler, the control list elements
specified will have the highest priority. The hierarchy of precedence for control list elements
for samplers is:

1. Those supplied in the control list argument to addSampler

2. Those supplied in the control list argument in the preceding preceding call to configureMCMC
3. Those supplied in the NIMBLE system option MCMCcontrolDefaultList

A call to addSampler results in a single instance of the specified sampler, which will be
specialized to the specified target model node or nodes, being added at end of the current
sampler ordering.

Printing, re-ordering, and removing samplers

The current, ordered, list of all samplers in the MCMC configuration may be printed by
calling the getSamplers method. When you want to see only samplers acting on specific
model nodes or variables, provide those names as an argument to getSamplers.

The existing samplers may be re-ordered using the setSamplers method. The ind argu-
ment is a vector of sampler indices, or a character vector of model node or variable names.
The samplers in the MCMC configuration will be replaced by the samplers corresponding to
the indices provided, or those samplers acting on the target nodes specified. Here are a few
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examples. Each example assumes the MCMCspec object initially contains 10 samplers, and
each example is independent of the others.

## Truncate the current list of samplers to the first 5

mcmcspec$setSamplers(ind = 1:5)

## Retain only the third sampler, which will subsequently

## become the first sampler

mcmcspec$setSamplers(ind = 3)

## Reverse the ordering of the samplers

mcmcspec$setSamplers(ind = 10:1)

## The new set of samplers becomes the

## {first, first, first, second, third} from the current list.

## Upon each iteration of the MCMC, the 'first' sampler will

## be executed 3 times, however each instance of the sampler

## will be independent in terms of scale, adaptation, etc.

mcmcspec$setSamplers(ind = c(1, 1, 1, 2, 3))

## Set the list of samplers to only those acting on model node 'alpha'

mcmcspec$setSamplers('alpha')

## Set the list of samplers to those acting on any components of the

## model variables 'x', 'y', or 'z'.

mcmcspec$setSamplers(c('x', 'y', 'z'))

Samplers may be removed from the current sampler ordering with the removeSamplers

method. The following examples demonstrate this usage, where again each example assumes
that mcmcspec initially contains 10 samplers, and each example is independent of the others.
removeSamplers may also accept a character vector argument, and will remove all samplers
acting on these target model nodes.

## Remove the first sampler

mcmcspec$removeSamplers(ind = 1)

## Remove the last five samplers

mcmcspec$removeSamplers(ind = 6:10)

## Remove all samplers,

## resulting in an empty MCMC configuration, containing no samplers

mcmcspec$removeSamplers(ind = 1:10)

## Remove all samplers acting on 'x' or any component of it

mcmcspec$removeSamplers('x')
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## Default: providing no argument removes all samplers

mcmcspec$removeSamplers()

Monitors and thinning intervals

An MCMCspec object contains two independent lists of variables to monitor, which corre-
spond to two independent thinning intervals: thin corresponding to monitors, and thin2

corresponding to monitors2. Monitors operate at the variable level. Only entire model
variables may be monitored. Specifying a monitor on a node, e.g., x[1], will result in the
entire variable x being monitored.

The variables specified in monitors and monitors2 will be recorded (with thinning inter-
val thin) into the mvSamples and mvSamples2 – both modelValues objects – of the MCMC,
respectively. See Section 7.4 for information about extracting these modelValues objects
from the MCMC algorithm object.

Monitors may be added to the MCMC configuration either in the original call to configureMCMC
or using the addMonitors method:

## Using an arguments to configureMCMC

mcmcspec <- configureMCMC(Rmodel, monitors = c('alpha', 'beta'), monitors2 = 'x')

## Calling a member method of the mcmcspec object

## This results in the same monitors as above

mcmcspec$addMonitors(c('alpha', 'beta'))

mcmcspec$addMonitors2('x')

Similarly, either thinning interval may be set at either step:

## Using an argument to configureMCMC

mcmcspec <- configureMCMC(Rmodel, thin = 1, thin2 = 100)

## Calling a member method of the mcmcspec object

## This results in the same thinning intervals as above

mcmcspec$setThin(1)

mcmcspec$setThin2(100)

The current lists of monitors, and thinning intervals, may be displayed using the getMonitors
method. Both sets of monitors (monitors and monitors2) may be reset to empty character
vectors by calling the resetMonitors method.

7.2 Building and compiling the MCMC algorithm

Once the MCMC configuration object has been created, and customized to one’s liking, it
may be used to build an MCMC function:
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Rmcmc <- buildMCMC(mcmcspec)

buildMCMC is a nimbleFunction. The returned object Rmcmc is an instance of the NIM-
BLE function specific to configuration mcmcspec.

When no customization is needed, one can skip configureMCMC and simply provide a
model object to buildMCMC. The following two MCMC functions will be identical:

mcmcspec <- configureMCMC(Rmodel) ## default MCMC configuration

Rmcmc1 <- buildMCMC(mcmcspec)

Rmcmc2 <- buildMCMC(Rmodel) ## uses the default configuration for Rmodel

For speed of execution, we usually desire to compile the MCMC function to C++ (as
is the case for other NIMBLE functions). To do so, we use compileNimble. Care must be
taken to perform this compilation in the same project that contains the underlying model
and compiled model objects. A typical compilation call looks like:

Cmcmc <- compileNimble(Rmcmc, project = Rmodel)

Alternatively, if the model has not already been compiled, they can be compiled together
in one line:

Cmcmc <- compileNimble(Rmodel, Rmcmc)

7.3 Executing the MCMC algorithm

The MCMC function (either the compiled or uncompiled version) has one required argument,
niter, representing the number of iterations to run the MCMC algorithm. We’ll assume the
function is called mcmc. Calling mcmc(niter) causes the full list of samplers (as determined
from the input MCMCspec object) to be executed niter times, and the monitored variables
to be stored into the internal mvSamples and/or mvSamples2 objects as governed by the
corresponding thinning intervals.

The mcmc function has an optional reset argument. When reset = TRUE (the default
value), the following occurs at the onset of the call to mcmc$run():

• All model nodes are checked that they contain values, and that model log-probabilities
are up-to-date with the current node values. If a stochastic node is missing a value, it is
populated using a call to simulate. The values of deterministic nodes are calculated,
to be consistent with their parent nodes. If any right-hand-side-only nodes are missing
a value, an error results.
• All MCMC sampler functions are reset to their initial state: the initial values of any

sampler control parameters (e.g., scale, sliceWidth, or propCov) are reset to their
initial values, as were specified by the original MCMC configuration.
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• The internal modelValues objects mvSamples and mvSamples2 are each resized to the
appropriate length for holding the requested number of samples (niter/thin, and
niter/thin2, respectively).

When mcmc$run(niter, reset = FALSE) is called, the MCMC algorithm picks up from
where it left off. No values in the model are checked or altered, and sampler functions are
not reset to their initial states. Further, the internal modelValues objects containing samples
are each increased in size to appropriately accommodate the additional samples.

Further arguments and details can be found by help(buildMCMC).

7.4 Extracting MCMC samples

After executing the MCMC, the output samples can be extracted as follows as:

mvSamples <- mcmc$mvSamples

mvSamples2 <- mcmc$mvSamples2

These modelValues objects can be converted into matrices using as.matrix:

samplesMatrix <- as.matrix(mvSamples)

samplesMatrix2 <- as.matrix(mvSamples2)

The column names of the matrices will be the node names of nodes in the monitored
variables. Then, for example, the mean of the samples for node x[2] could be calculated as:

mean(samplesMatrix[, 'x[2]'])

7.5 Sampler Algorithms provided with NIMBLE

We now describe the samplers provided with NIMBLE. The MCMC configuration for a
model generated from the following model code will serve as our example for this section:

code <- nimbleCode({
a ~ dgamma(1, 1)

b ~ dgamma(1, 1)

p ~ dbeta(a, b)

y1 ~ dbinom(prob = p, size = 10)

y2 ~ dbinom(prob = p, size = 20)

})
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7.5.1 Terminal node end sampler

The end sampler is only appropriate for use on terminal stochastic nodes (that is, those
having no stochastic dependencies). Note that such nodes play no role in inference but have
often been included in BUGS models to accomplish posterior predictive checks. NIMBLE
allows posterior predictive values to be simulated independently of running MCMC, for
example by writing a nimbleFunction to do so. This means that in many cases where
terminal stochastic nodes have been included in BUGS models, they are not needed when
using NIMBLE.

The end sampler functions by calling the simulate method of the relevant node, then
updating model probabilities and deterministic dependent nodes. The end sampler will
automatically be assigned to all terminal, non-data stochastic nodes in a model by the
default MCMC configuration, so it is uncommon to manually assign this sampler. The end

sampler accepts no control list arguments.
Example usage:

mcmcspec$addSampler(target = 'y[1]', type = 'end')

7.5.2 Scalar Metropolis-Hastings random walk RW sampler

The RW sampler executes adaptive Metropolis-Hastings sampling with a normal proposal
distribution, implementing the adaptation routine given in [6]. This sampler can be applied
to any scalar continuous-valued stochastic node.

The RW sampler can be customized using the control list argument to set the initial
proposal distribution scale, and the adaptive properties of the sampler. See help(samplers)
for details.

Example usage:

mcmcspec$addSampler(target = 'a', type = 'RW',

control = list(adaptive = FALSE, scale = 3))

mcmcspec$addSampler(target = 'b', type = 'RW',

control = list(adaptive = TRUE, adaptInterval = 200))

Note that because we use a simple normal proposal distribution on all nodes, negative
proposals may be simulated for non-negative random variables. These will be rejected, so the
only downsides to this are some inefficiency and the presence of warnings during uncompiled
(but not compiled) execution indicating NA or NaN values.

7.5.3 Multivariate Metropolis-Hastings RW block sampler

The RW block sampler performs a simultaneous update of one or more model nodes, using
an adaptive Metropolis-Hastings algorithm with a multivariate normal proposal distribution
[5], implementing the adaptation routine given in [6]. This sampler may be applied to any
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set of continuous-valued model nodes, to any single continuous-valued multivariate model
node, or to any combination thereof.

The RW block sampler can be customized using the control list argument to set the
initial proposal covariance, and the adaptive properties of the sampler. See help(samplers)
for details.

Example usage:

mcmcspec$addSampler(target = c('a', 'b', 'c'), type = 'RW_block')

7.5.4 slice sampler

The slice sampler performs slice sampling of the scalar node to which it is applied [4]. This
sampler can operate on either continuous-valued or discrete-valued scalar nodes. The slice
sampler performs a “stepping out” procedure, in which the slice is iteratively expanded to
the left or right by an amount sliceWidth. This sampler is optionally adaptive, whereby the
value of sliceWidth is adapted towards the observed absolute difference between successive
samples.

The slice sampler can be customized using the control list argument to set the initial
slice width, and the adaptive properties of the sampler. See help(samplers) for details.

Example usage:

mcmcspec$addSampler(target = 'y[1]', type = 'slice',

control = list(adaptive = FALSE, sliceWidth = 3))

mcmcspec$addSampler(target = 'y[2]', type = 'slice',

control = list(adaptive = TRUE, sliceMaxSteps = 1))

7.5.5 Hierarchical crossLevel sampler

This sampler is constructed to perform simultaneous updates across two levels of stochastic
dependence in the model structure. This is possible when all stochastic descendents of
node(s) at one level have conjugate relationships with their own stochastic descendents. In
this situation, a Metropolis-Hastings algorithm may be used, in which a multivariate normal
proposal distribution is used for the higher-level nodes, and the corresponding proposals
for the lower-level nodes undergo Gibbs (conjugate) sampling. The joint proposal is either
accepted or rejected for all nodes involved based upon the Metropolis-Hastings ratio.

The crossLevel sampler can be customized using the control list argument to set the
initial proposal covariance and the adaptive properties for the Metropolis-Hastings sampling
of the higher-level nodes. See help(samplers) for details.

Example usage:
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mcmcspec$addSampler(target = c('a', 'b', 'c'), type = 'crossLevel')

The requirement that all stochastic descendents of the target nodes must themselves
have only conjugate descendents will be checked when the MCMC algorithm is built. This
sampler is useful when there is strong dependence across the levels of a model that causes
problems with convergence or mixing.

7.5.6 Customized log likelihood evaluations using the RW llFunction

sampler

Sometimes it is useful to control the log likelihood calculations used for an MCMC updater
instead of simply using the model. For example, one could use a sampler with a log like-
lihood that analytically (or numerically) integrates over latent model nodes. Or one could
use a sampler with a log likelihood that comes from a stochastic approximation such as a
particle filter (see below), allowing composition of a particle MCMC (PMCMC) algorithm
[1]. The RW llFunction sampler handles this by using a Metropolis-Hastings algorithm
with a normal proposal distribution and a user-provided log-likelihood function. To allow
compiled execution, the log-likelihood function must be provided as a specialized instance
of a nimbleFunction. The log-likelihood function may use the same model as the MCMC
as a setup argument (as does the example below), but if so the state of the model should
be unchanged during execution of the function (or you must understand the implications
otherwise).

The RW llFunction sampler can be customized using the control list argument to set
the initial proposal distribution scale and the adaptive properties for the Metropolis-Hastings
sampling. In addition, the control list argument must contain a named llFunction ele-
ment, which is specialized nimbleFunction that accepts no arguments and returns a scalar
double number. The return value must be the total log-likelihood of all stochastic dependents
of the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves –
or whatever surrogate is being used for the total log-likelihood. This is a required control

list element with no default. See help(samplers) for details.
Complete example of correct usage:

code <- nimbleCode({
p ~ dunif(0, 1)

y ~ dbin(p, n)

})

Rmodel <- nimbleModel(code, data = list(y=3), inits = list(p=0.5, n=10))

llFun <- nimbleFunction(

setup = function(model) { },
run = function() {

y <- model$y

p <- model$p
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n <- model$n

ll <- lfactorial(n) - lfactorial(y) - lfactorial(n-y) +

y * log(p) + (n-y) * log(1-p)

returnType(double())

return(ll)

}
)

RllFun <- llFun(Rmodel)

mcmcspec <- configureMCMC(Rmodel, nodes = NULL)

mcmcspec$addSampler(target = 'p', type = 'RW_llFunction',

control = list(llFunction = RllFun, includesTarget = FALSE))

Rmcmc <- buildMCMC(mcmcspec)

7.5.7 Conjugate (Gibbs) samplers

Gibbs samplers can be provided for nodes in conjugate relationships, as specified by the
system-level conjugacyRelationshipsInputList. Conjugate samplers should not, in gen-
eral, be manually added or modified by a user, since the control list requisites and syntax
are lengthy, and determining conjugacy and assigning conjugate samplers is fully handled
by the default MCMC configuration.

A model may be checked for conjugate relationships using model$checkConjugacy. This
returns a named list describing all conjugate nodes. checkConjugacy can also accept a
character vector argument specifying a subset of model node names to check for conjugacy.

The current release of NIMBLE supports conjugate sampling of the relationships listed
in Table 7.1.

Conjugate sampler functions may (optionally) dynamically check that their own pos-
terior likelihood calculations are correct. If incorrect, a warning is issued. However, this
functionality will roughly double the run-time required for conjugate sampling. By default,
this option is disabled in NIMBLE. This option may be enabled by executing the following:

nimbleOptions(verifyConjugatePosteriors = TRUE)

buildConjugateSamplerFunctions()

7.6 Detailed MCMC example: litters

Here is a detailed example of specifying, building, compiling, and running two MCMC algo-
rithms. We use the litters example from the BUGS examples.
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Prior Distribution Sampling Distribution Parameter

Beta Bernoulli prob

Binomial prob

Negative Binomial prob

Dirichlet Multinomial prob

Gamma Poisson lambda

Normal tau

Lognormal taulog

Gamma rate

Exponential rate

Normal Normal mean

Lognormal meanlog

Multivariate Normal Multivariate Normal mean

Wishart Multivariate Normal prec

Table 7.1: Conjugate relationships supported by NIMBLE’s MCMC engine.

###############################

##### model configuration #####

###############################

## define our model using BUGS syntax

litters_code <- nimbleCode({
for (i in 1:G) {

a[i] ~ dgamma(1, .001)

b[i] ~ dgamma(1, .001)

for (j in 1:N) {
r[i,j] ~ dbin(p[i,j], n[i,j])

p[i,j] ~ dbeta(a[i], b[i])

}
mu[i] <- a[i] / (a[i] + b[i])

theta[i] <- 1 / (a[i] + b[i])

}
})

## list of fixed constants

constants <- list(G = 2,

N = 16,

n = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 11, 8, 10, 13,

10, 12, 9, 10, 9, 10, 5, 9, 9, 13, 7, 5, 10, 7, 6,

10, 10, 10, 7), nrow = 2))

## list specifying model data

data <- list(r = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 10, 8, 9, 12, 9,
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11, 8, 9, 8, 9, 4, 8, 7, 11, 4, 4, 5 , 5, 3, 7, 3,

7, 0), nrow = 2))

## list specifying initial values

inits <- list(a = c(1, 1),

b = c(1, 1),

p = matrix(0.5, nrow = 2, ncol = 16),

mu = c(.5, .5),

theta = c(.5, .5))

## build the R model object

Rmodel <- nimbleModel(litters_code,

constants = constants,

data = data,

inits = inits)

## defining model...

## building model...

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## model building finished

###########################################

##### MCMC configuration and building #####

###########################################

## generate the default MCMC configuration;

## only wish to monitor the derived quantity 'mu'

mcmcspec <- configureMCMC(Rmodel, monitors = 'mu')

## check the samplers assigned by default MCMC configuration

mcmcspec$getSamplers()

## [1] RW sampler: a[1], adaptive: TRUE, adaptInterval: 200, scale: 1

## [2] RW sampler: a[2], adaptive: TRUE, adaptInterval: 200, scale: 1

## [3] RW sampler: b[1], adaptive: TRUE, adaptInterval: 200, scale: 1

## [4] RW sampler: b[2], adaptive: TRUE, adaptInterval: 200, scale: 1

## [5] conjugate_dbeta sampler: p[1, 1], dependents_dbin: r[1, 1]

## [6] conjugate_dbeta sampler: p[1, 2], dependents_dbin: r[1, 2]

## [7] conjugate_dbeta sampler: p[1, 3], dependents_dbin: r[1, 3]

## [8] conjugate_dbeta sampler: p[1, 4], dependents_dbin: r[1, 4]

## [9] conjugate_dbeta sampler: p[1, 5], dependents_dbin: r[1, 5]

## [10] conjugate_dbeta sampler: p[1, 6], dependents_dbin: r[1, 6]

## [11] conjugate_dbeta sampler: p[1, 7], dependents_dbin: r[1, 7]

## [12] conjugate_dbeta sampler: p[1, 8], dependents_dbin: r[1, 8]
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## [13] conjugate_dbeta sampler: p[1, 9], dependents_dbin: r[1, 9]

## [14] conjugate_dbeta sampler: p[1, 10], dependents_dbin: r[1, 10]

## [15] conjugate_dbeta sampler: p[1, 11], dependents_dbin: r[1, 11]

## [16] conjugate_dbeta sampler: p[1, 12], dependents_dbin: r[1, 12]

## [17] conjugate_dbeta sampler: p[1, 13], dependents_dbin: r[1, 13]

## [18] conjugate_dbeta sampler: p[1, 14], dependents_dbin: r[1, 14]

## [19] conjugate_dbeta sampler: p[1, 15], dependents_dbin: r[1, 15]

## [20] conjugate_dbeta sampler: p[1, 16], dependents_dbin: r[1, 16]

## [21] conjugate_dbeta sampler: p[2, 1], dependents_dbin: r[2, 1]

## [22] conjugate_dbeta sampler: p[2, 2], dependents_dbin: r[2, 2]

## [23] conjugate_dbeta sampler: p[2, 3], dependents_dbin: r[2, 3]

## [24] conjugate_dbeta sampler: p[2, 4], dependents_dbin: r[2, 4]

## [25] conjugate_dbeta sampler: p[2, 5], dependents_dbin: r[2, 5]

## [26] conjugate_dbeta sampler: p[2, 6], dependents_dbin: r[2, 6]

## [27] conjugate_dbeta sampler: p[2, 7], dependents_dbin: r[2, 7]

## [28] conjugate_dbeta sampler: p[2, 8], dependents_dbin: r[2, 8]

## [29] conjugate_dbeta sampler: p[2, 9], dependents_dbin: r[2, 9]

## [30] conjugate_dbeta sampler: p[2, 10], dependents_dbin: r[2, 10]

## [31] conjugate_dbeta sampler: p[2, 11], dependents_dbin: r[2, 11]

## [32] conjugate_dbeta sampler: p[2, 12], dependents_dbin: r[2, 12]

## [33] conjugate_dbeta sampler: p[2, 13], dependents_dbin: r[2, 13]

## [34] conjugate_dbeta sampler: p[2, 14], dependents_dbin: r[2, 14]

## [35] conjugate_dbeta sampler: p[2, 15], dependents_dbin: r[2, 15]

## [36] conjugate_dbeta sampler: p[2, 16], dependents_dbin: r[2, 16]

## double-check our monitors, and thinning interval

mcmcspec$getMonitors()

## thin = 1: mu

## build the executable R MCMC function

mcmc <- buildMCMC(mcmcspec)

## let's try another MCMC, as well,

## this time using the crossLevel sampler for top-level nodes

## generate an empty MCMC configuration

## we need a new copy of the model to avoid compilation errors

Rmodel2 <- Rmodel$newModel()

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

mcmcspec_CL <- configureMCMC(Rmodel2, nodes = NULL, monitors = 'mu')

## add two crossLevel samplers

mcmcspec_CL$addSampler(target = c('a[1]', 'b[1]'), type = 'crossLevel')
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## [1] crossLevel sampler: a[1], b[1], adaptive: TRUE, adaptScaleOnly: FALSE, adaptInterval: 200, scale: 1, propCov: identity

mcmcspec_CL$addSampler(target = c('a[2]', 'b[2]'), type = 'crossLevel')

## [2] crossLevel sampler: a[2], b[2], adaptive: TRUE, adaptScaleOnly: FALSE, adaptInterval: 200, scale: 1, propCov: identity

## let's check the samplers

mcmcspec_CL$getSamplers()

## [1] crossLevel sampler: a[1], b[1], adaptive: TRUE, adaptScaleOnly: FALSE, adaptInterval: 200, scale: 1, propCov: identity

## [2] crossLevel sampler: a[2], b[2], adaptive: TRUE, adaptScaleOnly: FALSE, adaptInterval: 200, scale: 1, propCov: identity

## build this second executable R MCMC function

mcmc_CL <- buildMCMC(mcmcspec_CL)

###################################

##### compile to C++, and run #####

###################################

## compile the two copies of the model

Cmodel <- compileNimble(Rmodel)

Cmodel2 <- compileNimble(Rmodel2)

## compile both MCMC algorithms, in the same

## project as the R model object

## NOTE: at this time, we recommend compiling ALL

## executable MCMC functions together

Cmcmc <- compileNimble(mcmc, project = Rmodel)

Cmcmc_CL <- compileNimble(mcmc_CL, project = Rmodel2)

## run the default MCMC function,

## and example the mean of mu[1]

Cmcmc$run(1000)

## NULL

cSamplesMatrix <- as.matrix(Cmcmc$mvSamples)

mean(cSamplesMatrix[, 'mu[1]'])

## [1] 0.8882948

## run the crossLevel MCMC function,

## and examine the mean of mu[1]

Cmcmc_CL$run(1000)

## NULL

cSamplesMatrix_CL <- as.matrix(Cmcmc_CL$mvSamples)

mean(cSamplesMatrix_CL[, 'mu[1]'])

## [1] 0.8871013
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7.7 Comparing different MCMC engines with MCMCsuite

NIMBLE’s MCMCsuite function automatically runs WinBUGS, JAGS, Stan, and/or multiple
NIMBLE configurations on the same model. Note that the BUGS code must be compatible
with whichever BUGS packages are included, and separate Stan code must be provided.

We show how to use MCMCsuite for the same litters example used in 7.6. Subsequently,
additional details of the MCMCsuite are given.

7.7.1 MCMC Suite example: litters

The following code executes the following MCMC algorithms on the litters example:

1. WinBUGS
2. JAGS
3. NIMBLE default configuration
4. NIMBLE configuration with argument onlySlice = TRUE

5. NIMBLE custom configuration using two crossLevel samplers

output <- MCMCsuite(

code = litters_code,

constants = constants,

data = data,

inits = inits,

monitors = 'mu',

MCMCs = c('bugs', 'jags', 'nimble', 'nimble_slice', 'nimble_CL'),

MCMCdefs = list(

nimble_CL = quote({
mcmcspec <- configureMCMC(Rmodel, nodes = NULL)

mcmcspec$addSampler(target = c('a[1]', 'b[1]'), type = 'crossLevel')

mcmcspec$addSampler(target = c('a[2]', 'b[2]'), type = 'crossLevel')

mcmcspec

})),
plotName = 'littersSuite'

)

7.7.2 MCMC Suite outputs

Executing the MCMC Suite returns a named list containing three elements, as well as gener-
ates and saves traceplots and posterior density plots. The elements of this return list object
are:

Samples

samples is a three-dimensional array, containing all MCMC samples from each algorithm.
The first dimension of the samples array corresponds to each MCMC algorithm, and may
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be indexed by the name of the algorithm. The second dimension of the samples array
corresponds to each node which was monitored, and may be indexed by the node name.
The third dimension of samples contains the MCMC samples, and has length niter/thin

- burnin.

Summary

The MCMC suite output contains a variety of pre-computed summary statistics, which are
stored in the summary matrix. For each monitored node and each MCMC algorithm, the
following default summary statistics are calculated: mean, median, sd, the 2.5% quantile,
and the 97.5% quantile. These summary statistics are easily viewable, as:

output$summary

# , , mu[1]

# mean median sd quant025 quant975

# bugs 0.8795868 0.8889000 0.04349589 0.7886775 0.9205025

# jags 0.8872778 0.8911989 0.02911325 0.8287991 0.9335317

# nimble 0.8562232 0.8983763 0.12501395 0.4071524 0.9299781

# nimble_slice 0.8975283 0.9000483 0.02350363 0.8451926 0.9367147

# nimble_CL 0.8871314 0.8961146 0.05243039 0.7640730 0.9620532

#

# , , mu[2]

# mean median sd quant025 quant975

# bugs 0.7626974 0.7678000 0.04569705 0.6745975 0.8296025

# jags 0.7635539 0.7646913 0.03803033 0.6824946 0.8313314

# nimble 0.7179094 0.7246935 0.06061116 0.6058669 0.7970130

# nimble_slice 0.7665562 0.7683093 0.04051432 0.6641368 0.8350716

# nimble_CL 0.7605938 0.7655945 0.09138471 0.5822785 0.9568195

Timing

timing contains a named vector of the runtime for each MCMC algorithm, the total compile
time for the NIMBLE model and MCMC algorithms, and the compile time for Stan (if
specified). All run- and compile- times are given in minutes.

Plots

Executing the MCMC Suite provides and saves several plots. These include trace plots and
posterior density plots for each monitored node, under each algorithm.

Note that the generation of MCMC Suite plots in Rstudio may result in several warning
messages from R (regarding graphics devices), but will function without any problems.

7.7.3 Customizing MCMC Suite

An MCMC Suite is customizable in terms of all of the following:
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• MCMC algorithms to execute, optionally including WinBUGS, JAGS, Stan, and vari-
ous flavours of NIMBLE’s MCMC
• Custom-specified NIMBLE MCMC algorithms
• Automated parameter blocking for efficienct MCMC sampling
• Nodes to monitor
• Number of MCMC iterations
• Thinning interval
• Burn-in
• Summary statistics to report
• Generating and saving plots

NIMBLE MCMC algorithms may be specified using the MCMCs argument to MCMCsuite,
which is character vector defining the MCMC algorithms to run. The MCMCs argument may
include any of the following algorithms:

‘bugs’ WinBUGS MCMC algorithm
‘jags’ JAGS MCMC algorithm
‘Stan’ Stan MCMC algorithm
‘nimble’ NIMBLE MCMC using the default configuration
‘nimble RW’ NIMBLE MCMC using the default configuration with onlyRW = TRUE

‘nimble slice’ NIMBLE MCMC using the default configuration with onlySlice= TRUE

‘autoBlock’ NIMBLE MCMC algorithm with block sampling of dynamically determined
parameter groups attempting to maximize sampling efficiency

The default value for the MCMCs argument is c(‘jags’,‘nimble’, ‘nimble RW’, ‘nimble slice’,

‘autoBlock’).
The names of additional, custom, MCMC algorithms may also be provided in the MCMCs

argument, so long as these custom algorithms are defined in the MCMCdefs argument. An
example of this usage is given with the crossLevel algorithm in the litters MCMC Suite
example.

The MCMCdefs may be provided as named list of definitions, for any custom MCMC
algorithms specified in the MCMCs argument. If MCMCs specified an algorithm called ‘myMCMC’,
then MCMCdefs must contain an element named ‘myMCMC’. The contents of this element must
be a block of code that, when executed, returns the desired MCMC configuration object.
This block of code may assume the existence of the R model object, Rmodel. Further, this
block of code need not worry about adding monitors to the MCMC configuration; it need
only specify the samplers.

As a final important point, execution of this block of code must return the MCMC
configuration object. Therefore, elements supplied in the MCMCdefs argument should usually
take the form:
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MCMCdefs = list(

myMCMC = quote({
mcmcspec <- configureMCMC(Rmodel, ....)

mcmcspec$addSampler(.....)

mcmcspec ## returns the MCMC configuration object

})
)

Full details of the arguments and customization of the MCMC Suite is available through
the R help using help(MCMCsuite).

7.8 Advanced topics

7.8.1 Custom sampler functions

The following code illustrates how a NIMBLE developer would implement and use a Metropolis-
Hastings random walk sampler with fixed proposal standard deviation. The comments ac-
companying the code explain the necessary characteristics of all sampler functions.

## the name of this sampler function, for the purposes of

## adding it to MCMC configurations, will be 'my_RW'

my_RW <- nimbleFunction(

## sampler functions must contain 'sampler_BASE'

contains = sampler_BASE,

## sampler functions must have exactly these setup arguments:

## model, mvSaved, target, control

setup = function(model, mvSaved, target, control) {
## first, extract the control list elements, which will

## dictate the behavior of this sampler.

## the setup code will be later processed to determine

## all named elements extracted from the control list.

## these will become the required elements for any

## control list argument to this sampler, unless they also

## exist in the NIMBLE system option 'MCMCcontrolDefaultList'.

## the random walk proposal standard deviation

scale <- control$scale

## determine the list of all dependent nodes,

## up to the first layer of stochastic nodes, generally

## called 'calcNodes'. The values, inputs, and logProbs

## of these nodes will be retrieved and/or altered
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## by this algorithm.

calcNodes <- model$getDependencies(target)

},

## the run function must accept no arguments, execute

## the sampling algorithm, leave the modelValues object

## 'mvSaved' as an exact copy of the updated values in model,

## and have no return value. initially, mvSaved contains

## an exact copy of the values and logProbs in the model.

run = function() {

## extract the initial model logProb

model_lp_initial <- getLogProb(model, calcNodes)

## generate a proposal value for target node

proposal <- rnorm(1, model[[target]], scale)

## store this proposed value into the target node.

## notice the double assignment operator, `<<-`,

## necessary because 'model' is a persistent member

## data object of this sampler.

model[[target]] <<- proposal

## calculate target_logProb, propagate the

## proposed value through any deterministic dependents,

## and calculate the logProb for any stochastic

## dependnets. The total (sum) logProb is returned.

model_lp_proposed <- calculate(model, calcNodes)

## calculate the log Metropolis-Hastings ratio

log_MH_ratio <- model_lp_proposed - model_lp_initial

## Metropolis-Hastings step: determine whether or

## not to accept the newly proposed value

u <- runif(1, 0, 1)

if(u < exp(log_MH_ratio)) jump <- TRUE

else jump <- FALSE

## if we accepted the proposal, then store the updated

## values and logProbs from 'model' into 'mvSaved'.

## if the proposal was not accepted, restore the values

## and logProbs from 'mvSaved' back into 'model'.

if(jump) copy(from = model, to = mvSaved, row = 1,

nodes = calcNodes, logProb = TRUE)
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else copy(from = mvSaved, to = model, row = 1,

nodes = calcNodes, logProb = TRUE)

},

## sampler functions must have a member method 'reset',

## which takes no arguments and has no return value.

## this function is used to reset the sampler to its

## initial state. since this sampler function maintains

## no internal member data variables, reset() needn't

## do anything.

methods = list(

reset = function () {}
)

)

## now, assume the existence of an R model object 'Rmodel',

## which has a scalar-valued stochastic node 'x'

## create an MCMC configuration with no sampler functions

mcmcspec <- configureMCMC(Rmodel, nodes = NULL)

## add our custom-built random walk sampler on node 'x',

## with a fixed proposal standard deviation = 0.1

mcmcspec$addSampler(target = 'x', type = 'my_RW',

control = list(scale = 0.1))

Rmcmc <- buildMCMC(mcmcspec) ## etc...
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Other algorithms provided by
NIMBLE

In v0.4, the NIMBLE algorithm library is fairly limited beyond MCMC. It includes some
basic utilities for calculating and simulating sets of nodes. And it includes a couple of
algorithms, particle filters and MCEM, that illustrate the kind of programming with models
that can be done with NIMBLE.

8.1 Basic Utilities

8.1.1 simNodes, calcNodes, and getLogProbs

simNodes, calcNodes and getLogProb are basic nimbleFunctions that simulate, calculate,
or get the log probabilities (densities), respectively, of the same set of nodes each time they
are called. Each of these takes a model and a character string of node names as inputs. If
nodes is left blank, then all the nodes of the model are used.

For simNodes, the nodes provided will be topologically sorted to simulate in the correct
order. For calcNodes and getLogProb, the nodes will be sorted and dependent nodes will
be included. Recall that the calculations must be up to date (from a calculate call) for
getLogProb to return the values you are probably looking for.

simpleModelCode <- nimbleCode({
for(i in 1:4){

x[i] ~ dnorm(0,1)

y[i] ~ dnorm(x[i], 1) #y depends on x

z[i] ~ dnorm(y[i], 1) #z depends on y

#z conditionally independent of x

}
})

simpleModel <- nimbleModel(simpleModelCode)

89
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## defining model...

## building model...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## NAs were detected in model variables: x, logProb_x, y, logProb_y, z, logProb_z.

## model building finished

cSimpleModel <- compileNimble(simpleModel)

#simulates all the x's and y's

rSimXY <- simNodes(simpleModel, nodes = c('x', 'y') )

#calls calculate on x and its dependents (y, but not z)

rCalcXDep <- calcNodes(simpleModel, nodes = 'x')

#calls getLogProb on x's and y's

rGetLogProbXDep <- getLogProbNodes(simpleModel,

nodes = 'x')

#compiling the functions

cSimXY <- compileNimble(rSimXY, project = simpleModel)

cCalcXDep <- compileNimble(rCalcXDep, project = simpleModel)

cGetLogProbXDep <- compileNimble(rGetLogProbXDep,

project = simpleModel)

cSimpleModel$x

## [1] NA NA NA NA

cSimpleModel$y

## [1] NA NA NA NA

#simulating x and y

cSimXY$run()

## NULL

cSimpleModel$x

## [1] 0.81408104 1.50846186 0.60719211 -0.03049741

cSimpleModel$y

## [1] 0.9819697 1.5360858 -0.7381187 0.8891184
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cCalcXDep$run()

## [1] -10.34766

#Gives correct answer because logProbs

#updated by 'calculate' after simulation

cGetLogProbXDep$run()

## [1] -10.34766

cSimXY$run()

## NULL

#Gives old answer because logProbs

#not updated after 'simulate'

cGetLogProbXDep$run()

## [1] -10.34766

cCalcXDep$run()

## [1] -10.76837

8.1.2 simNodesMV, calcNodesMV, and getLogProbsMV

There is a similar trio of nimbleFunctions that does each job repeatedly for different rows of
a modelValues object. For example, simNodesMV will simulate in the model multiple times
and record each simulation in a row of its modelValues. calcNodesMV and getLogProbsMV

iterate over the rows of a modelValues, copy the nodes into the model, and then do their job
of calculating or collecting log probabilities (densities), respectively. Each of these returns a
numeric vector with the summed log probabilities of the chosen nodes from each each row.
calcNodesMV will save the log probabilities back into the modelValues object if saveLP ==

TRUE, a run-time argument.
Here are some examples:

mv <- modelValues(simpleModel)

rSimManyXY <- simNodesMV(simpleModel, nodes = c('x', 'y'), mv = mv)

rCalcManyXDeps <- calcNodesMV(simpleModel, nodes = 'x', mv = mv)

rGetLogProbMany <- getLogProbNodesMV(simpleModel,

nodes = 'x', mv = mv)

cSimManyXY <- compileNimble(rSimManyXY, project = simpleModel)

cCalcManyXDeps <- compileNimble(rCalcManyXDeps, project = simpleModel)
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cGetLogProbMany <- compileNimble(rGetLogProbMany, project = simpleModel)

cSimManyXY$run(m = 5) # simulating 5 times

## NULL

cCalcManyXDeps$run(saveLP = TRUE) # calculating

## [1] -19.36889 -21.39145 -14.71200 -10.72175 -11.67675

cGetLogProbMany$run() #

## [1] -19.36889 -21.39145 -14.71200 -10.72175 -11.67675

8.2 Particle Filter

NIMBLE includes an algorithm for a basic particle filter to be used for approximating the
log likelihood of a state-space model. A particle filter can be built for such a model by a
call to buildPF. This nimbleFunction requires setup arguments model and nodes, which is a
character vector specifying latent model nodes. The particle filter can be run by specifying
the number of particles.

Here is an example, using a linear state-space model for which we can also calculate the
likelihood using the Kalman Filter to verify if the particle filter seems to be working.

# Building a simple linear state-space model.

# x is latent space, y is observed data

timeModelCode <- nimbleCode({
x[1] ~ dnorm(mu_0, 1)

y[1] ~ dnorm(x[1], 1)

for(i in 2:t){
x[i] ~ dnorm(x[i-1] * a + b, 1)

y[i] ~ dnorm(x[i] * c, 1)

}

a ~ dunif(0, 1)

b ~ dnorm(0, 1)

c ~ dnorm(1,1)

mu_0 ~ dnorm(0, 1)

})

#simulate some data

t = 25; mu_0 = 1

x = rnorm(1 ,mu_0, 1)
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y = rnorm(1, x, 1)

a = 0.5; b = 1; c = 1

for(i in 2:t){
x[i] = rnorm(1, x[i-1] * a + b, 1)

y[i] = rnorm(1, x[i] * c, 1)

}
## build and compile the model

rTimeModel <- nimbleModel(timeModelCode, constants = list(t = t),

data = list(y = y), check = FALSE )

## defining model...

## building model...

## setting data and initial values...

## model building finished

cTimeModel <- compileNimble(rTimeModel)

#Build the particle filter

rPF <- buildPF(rTimeModel, "x")

cPF = compileNimble(rPF,project = rTimeModel)

#Set parameter values

cTimeModel$mu_0 = 1

cTimeModel$a = 0.5

cTimeModel$b = 1

cTimeModel$c = 1

cTimeModel$mu_0 = 1

#Run particle filter with

#5000 particles

cPF$run(m = 5000)

## [1] -42.54816

8.3 Monte Carlo Expectation Maximization (MCEM)

Suppose we have a model with missing data (or a layer of latent variables that can be
treated as missing data) and we would like to maximize the marginal likelihood of the model,
integrating over the missing data. A brute-force method for doing this is MCEM. This is an
EM algorithm in which the missing data are simulated via Monte Carlo (often MCMC, when
the full conditional distributions cannot be directly sampled from) at each iteration. MCEM
can be slow, and there are other methods for maximizing marginal likelihoods that can be
implemented in NIMBLE. The reason we started with MCEM is to explore the flexibility of
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NIMBLE and illustrate the combination of R and NIMBLE involved, with R managing the
highest-level processing of the algorithm and calling nimbleFunctions for computations.

We will revisit the pump example to illustrate the use of NIMBLE’s MCEM algorithm.

## defining model...

## building model...

## setting data and initial values...

## checking model... (use nimbleModel(..., check = FALSE) to skip model check)

## model building finished

pumpMCEM <- buildMCEM(model = newPump,

latentNodes = 'theta',

burnIn = 100,

mcmcControl = list(adaptInterval = 20),

boxConstraints = list( list( c('alpha', 'beta'),

limits = c(0, Inf) ) ),

buffer = 1e-6)

Here newPump was created just like pump in Section 2.2. The first argument, model, is a
NIMBLE model, which can be either the uncompiled or compiled version. At the moment,
the model provided cannot be part of another MCMC sampler.

The latentNodes argument should indicate the nodes that will be integrated over (sam-
pled via MCMC), rather than maximized. These nodes must be stochastic, not determinis-
tic! latentNodes will be expanded as described in Section 6.4.1: e.g., either latentNodes

= ‘x’ or latentNodes = c(‘x[1]’, ‘x[2]’) will treat x[1] and x[2] as latent nodes if
x is a vector of two values. All other non-data nodes will be maximized over. Note that
latentNodes can include discrete nodes, but the nodes to be maximized cannot.

The burnIn argument indicates the number of samples from the MCMC for the E-step
that should be discarded when computing the expected likelihood in the M-step. Note that
burnIn can be set to values lower than in standard MCMC computations, as each iteration
will start off where the last left off.

The mcmcControl argument will be passed to configureMCMC to define the MCMC to
be used.

The MCEM algorithm allows for box constraints on the nodes that will be optimized,
specified via the boxConstraints argument. This is highly recommended for nodes that
have zero density on parts of the real line1. Each constraint given should be a list in which
the first element is the names of the nodes or variables that the constraint will be applied to
and the second element is a vector of length 2, in which the first value is the lower limit and
the second is the upper limit. Values of Inf and -Inf are allowed. If a node is not listed,
it will be assumed that there are no constraints. These arguments are passed as lower and
upper to R’s optim function, using method = ‘L-BFGS-B’)

1Currently NIMBLE does not determine this automatically.
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The value of the buffer argument shrinks the boxConstraints by this amount. This
can help protect against non-finite values occuring when a parameter is on its boundary
value.

Once the MCEM has been built for the model of interest using buildMCEM, it can be run
as follows.

pumpMCEM(maxit = 20, m1 = 250, m2 = 500)

## alpha beta

## 0.817552 1.256396

pumpMCEM(maxit = 50, m1 = 1000, m2 = 5000)

## alpha beta

## 0.8236072 1.2673791

There are three run-time arguments:
The maxit argument is the number of total iterations to run the algorithm. More ad-

vanced MCEM algorithms have a stopping criteria based on computing the MCMC error.
Our current draft implementation of the algorithm merely runs maxit iterations and then
terminates.

Halfway through the algorithm, the sample size used for the E-step switches from m1 to
m2. This provides smaller MCMC error as the algorithm converges. If m1 or m2 is less than
or equal to burnIn as defined in build MCEM, the MCEM algorithm will immediately quit.

When using the MCEM algorithm, we suggest first starting with small values of m1 and
m2 to get an estimate of how long the algorithm will take for larger MCMC samples. The
speed of the algorithm will be linear in m2 (assuming that m2 > m1 as intended).



Chapter 9

Writing nimbleFunctions

9.1 Writing nimbleFunctions

When you write an R function, you say what the input arguments are, you provide the code
for execution, and in that code you give the returned value1. Using the function keyword
in R triggers the operation of creating an object that is the function.

Creating nimbleFunctions is similar, but there are two kinds of code and two steps of
execution:

1. Setup code is provided as a regular R function, but the programmer does not control
what it returns. Typically the inputs to setup code are objects like a model, a vector
of nodes, a modelValues object or modelValuesSpec, or another nimbleFunction. The
setup code, as its name implies, sets up information for run-time code. It is executed
in R, so it can use any aspect of R.

2. Run code is provided in the NIMBLE language. This is similar to a narrow subset of R,
but it is important to remember that it is different – defined by what can be compiled
– and much more limited. Run code can use the objects created by the setup code. In
addition, some information on variable types must be provided for input arguments,
the return object, and in some circumstances for local variables. There are two kinds
of run code:

(a) There is always a primary function, given as an argument called run2.
(b) There can optionally be other functions, or “methods” in the language of object-

oriented programming, that share the same objects created by the setup function.

Here is a small example to fix ideas:

logProbCalcPlus <- nimbleFunction(

setup = function(model, node) {
dependentNodes <- model$getDependencies(node)

valueToAdd <- 1

1normally the value of the last evaluated code, or the argument to return().
2This can be omitted if you don’t need it.

96
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},

run = function(P = double(0)) {
model[[node]] <<- P + valueToAdd

return(calculate(model, dependentNodes))

returnType(double(0))

})

code <- nimbleCode({
a ~ dnorm(0, 1); b ~ dnorm(a, 1)

})
testModel <- nimbleModel(code, check = FALSE)

## defining model...

## building model...

## model building finished

logProbCalcPlusA <- logProbCalcPlus(testModel, 'a')

testModel$b <- 1.5

logProbCalcPlusA$run(0.25)

## [1] -2.650377

dnorm(1.25,0,1,TRUE)+dnorm(1.5,1.25,1,TRUE) ## direct validation

## [1] -2.650377

testModel$a ## a was set to 0.5 + valueToAdd

## [1] 1.25

The call to the R function called nimbleFunction returns a function, similarly to defining
a function in R. That function, logProbCalcPlus, takes arguments for its setup function,
executes it, and returns an object, logProbCalcPlusA, that has a run member function
(method) accessed by $run. In this case, the setup function obtains the stochastic depen-
dencies of the node using the getDependencies member function of the model (see Section
6.5.2) and stores them in dependentNodes. In this way, logProbCalcPlus can adapt to any
model. It also creates a variable, valueToAdd, that can be used by the nimbleFunction.

The object logProbCalcPlusA, returned by logProbCalcPlus, is permanently bound to
the results of the processed setup function. In this case, logProbCalcPlusA$run takes a
scalar input value, P, assigns P + valueToAdd to the given node in the model, and returns
the sum of the log probabilities of that node and its stochastic dependencies3. We say

3Note the use of the global assignment operator to assign into the model. This is necessary for assigning
into variables from the setup function, at least if you want to void warnings from R. These warnings come
from R’s reference class system.
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logProbCalcPlusA is an “instance” of logProbCalcPlus that is “specialized” or “bound”
to a and testModel. Usually, the setup code will be where information about the model
structure is determined, and then the run code can use that information without repeatedly,
redundantly recomputing it. A nimbleFunction can be called repeatedly, each time returning
a specialized nimbleFunction.

Readers familiar with object-oriented programming may find it useful to think in terms
of class definitions and objects. nimbleFunction creates a class definition. Each specialized
nimbleFunction is one object in the class. The setup arguments are used to define member
data in the object.

9.2 Using and compiling nimbleFunctions

To compile the nimbleFunction, together with its model, we use compileNimble:

CnfDemo <- compileNimble(testModel, logProbCalcPlusA)

CtestModel <- CnfDemo$testModel

ClogProbCalcPlusA <- CnfDemo$logProbCalcPlusA

These have been initialized with the values from their uncompiled versions and can be
used in the same way:

CtestModel$a ## values were initialized from testModel

## [1] 1.25

CtestModel$b

## [1] 1.5

lpA <- ClogProbCalcPlusA$run(1.5)

lpA

## [1] -5.462877

## verify the answer:

dnorm(CtestModel$b, CtestModel$a, 1, log = TRUE) +

dnorm(CtestModel$a, 0, 1, log = TRUE)

## [1] -5.462877

CtestModel$a ## a was modified in the compiled model

## [1] 2.5

testModel$a ## the uncompiled model was not modified

## [1] 1.25
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9.2.1 Accessing and modifying numeric values from setup

While models and nodes created during setup cannot be modified4, numeric values and
modelValues (see below) can be. For example:

logProbCalcPlusA$valueToAdd ## in the uncompiled version

## [1] 1

logProbCalcPlusA$valueToAdd <- 2

ClogProbCalcPlusA$valueToAdd ## or in the compiled version

## [1] 1

ClogProbCalcPlusA$valueToAdd <- 3

ClogProbCalcPlusA$run(1.5)

## [1] -16.46288

CtestModel$a ## a == 1.5 + 3

## [1] 4.5

9.3 nimbleFunctions without setup code

The setup function is optional. If it is omitted, then nimbleFunction is more like function:
it simply returns a function that can be executed and compiled. If there is no setup code,
there is no specialization step. This is useful for doing math or the other kinds of processing
available in NIMBLE when no model or modelValues is needed.

solveLeastSquares <- nimbleFunction(

run = function(X = double(2), y = double(1)) {
ans <- inverse(t(X) %*% X) %*% (t(X) %*% y)

return(ans)

returnType(double(2))

} )

X <- matrix(rnorm(400), nrow = 100)

y <- rnorm(100)

solveLeastSquares(X, y)

## [,1]

## [1,] -0.1559144

4Actually, they can be, but only for uncompiled nimbleFunctions
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## [2,] -0.1874887

## [3,] 0.1541508

## [4,] -0.1063246

CsolveLeastSquares <- compileNimble(solveLeastSquares)

CsolveLeastSquares(X, y)

## [,1]

## [1,] -0.1559144

## [2,] -0.1874887

## [3,] 0.1541508

## [4,] -0.1063246

This example shows the textbook calculation of a least squares solution for regression of
100 data points on 4 explanatory variables, all generated randomly5. Such functions can be
called from other nimbleFunctions or used in BUGS code. 6

If one wants a nimbleFunction that does get specialized but has empty setup code, use
setup = function() {} or setup = TRUE.

9.4 Useful tools for setup functions

The setup function is typically used to determine information on nodes in a model, set up
any modelValues objects, set up any nimbleFunctions or nimbleFunctionLists, and set up
any persistent numeric objects. For example, the setup code of an MCMC nimbleFunction
creates the nimbleFunctionList of sampler nimbleFunctions. The values of numeric objects
created in setup can be modified by run code and will persist across calls.

Some of the useful tools and objects to create in setup functions include

vectors of node names Often these are obtained from the getNodeNames and getDependencies

methods of a model, described in Section 6.5.1.
modelValues objects These are discussed more below.
specializations of other nimbleFunctions A useful NIMBLE programming technique is

to have one nimbleFunction contain other nimbleFunctions, which it can use in its run-
time code.

lists of other nimbleFunctions In addition to containing single other nimbleFunctions, a
nimbleFunction can contain a list of other nimbleFunctions. These are discussed more
below.

5Of course in general, explicitly calculating the inverse is not the recommended numerical recipe for least
squares.

6On the machine this is being written on, the compiled version runs a few times faster than the uncompiled
version. However we refrain from formal speed tests.
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9.4.1 Control of setup outputs

Sometimes setup code may create variables that are not used in run-time code. By default,
NIMBLE inspects run-time code and omits variables from setup that do not appear in run-
time code from compilation. However, sometimes a programmer may want to force a numeric
or character variable to be created in compilation, even if it is not used directly in run-time
code. As shown below, such variables can be directly accessed in one nimbleFunction from
another, which provides a way of using nimbleFunctions as general data structures. To
force NIMBLE to include variables around during compilation, for example X and Y, simply
include

setupOutputs(X, Y)

anywhere in the setup code.

9.5 NIMBLE language components

9.5.1 Basics

There are several general points that will be useful before describing the NIMBLE language
in more detail.

• NIMBLE language functions are not R functions. In many cases we have used syntax
identical or nearly so to R, and in most cases we have provided a matching R function,
but it is important not to confuse the NIMBLE language definition with the behavior
of the corresponding R function.
• As in R, function calls in NIMBLE can provide arguments by name or in a default

order.
• Like R, NIMBLE uses 1-based indexing. For example, the first element of a vector x

is x[1], not x[0].
• To a large extent, NIMBLE functions can be executed in R (uncompiled) or can be

compiled. Using them in R will be slow, and is intended for testing and debugging
algorithm logic.
• NIMBLE is the opposite of R for argument passing. R nearly always uses pass-by-

value. NIMBLE nearly always uses pass-by-reference (or pointer). That means that in
compiled execution only, changing the value of a variable that was a function input will
change the value in the calling function. Thus it is possible to write a nimbleFunction
that returns information by modifying an argument. Yes, that’s a big difference in
behavior!
Although compiled nimbleFunctions can modify arguments, the R interface to a com-
piled nimbleFunction performs a copy to protect the original R argument from modi-
fication. (If you want to see arguments – potentially modified – as well as any return
value from R, you can modify the control argument to compileNimble to include
“returnAsList = TRUE”. Then the returned object will be a list with the nimble-
Function’s return value as the last element.)
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• BUGS model nodes are implemented as nimbleFunctions with member functions for
calculate, calculateDiff, simulate, and getLogProb. There are also member func-
tions for obtaining the value of each parameter or alternative parameters (e.g. rate =
1/scale).

9.5.2 Declaring argument types and the return type

NIMBLE requires that types of arguments and a return type be explicitly declared.
The syntax for a type declaration is:

• type(nDim, sizes)

type can currently take values double, integer, character (for scalars or vectors only)
or logical (for scalars only). In a returnType statement, a type of void() is valid, but you
don’t need to include that because it is the default if no returnType statement is included.
nDim is the number of dimensions, with 0 indicating scalar. sizes is an optional vector
of fixed, known sizes. These should use R’s c function if nDim > 1 (e.g. double(2, c(4,

5)) declareds a 4-×-5 matrix). If sizes are omitted, they will either be set when the entire
object is assigned to, or an explicit call to setSize is needed.

9.5.3 Driving models: calculate, calculateDiff, simulate, and
getLogProb

These four functions are the primary ways to operate a model. Their syntax was explained
in Section 6.4. Except for getLogProb, it is usually important for the nodes object to be
created in setup code such that they are sorted in topological order.

9.5.4 Accessing model and modelValues variables and using copy

The modelValues structure was introduced in Section 6.6. Inside nimbleFunctions, mod-
elValues are designed to easily save values from a model object during the running of a
nimbleFunction. A modelValues object used in run code must always exist in the setup
code, either by passing it in as a setup argument or creating it in the setup code.

To illustrate this, we will create a nimbleFunction for computing importance weights for
importance sampling. This function will use two modelValues objects. propModelValues

will contain a set of values simulated from the importance sampling distribution and a field
propLL for their log probabilities (densities). savedWeights will contain the difference in
log probability (density) between the model and the propLL value provided for each set of
values.

## Accepting modelValues as a setup argument

setupFunction = function(propModelValues, model){
## Building a modelValues in the setup function

savedWeightsSpec <- modelValuesSpec(vars = 'w',

types = 'double',
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sizes = 1)

savedWeights <- modelValues(spec = savedWeightsSpec)

## List of nodes to be used in run function

modelNodes <- model$getNodeNames(stochOnly = TRUE,

includeData = FALSE)

}

The simplest way to pass values back and forth between models and modelValues inside
of a nimbleFunction is with copy, which has the synonym nimCopy. See help(nimCopy) for
argument details.

Alternatively, the values may be accessed via indexing of individual rows, using the
notation mv[var, i], where mv is a modelValues object, var is a variable name (not a node
name), and i is a row number. Likewise, the getsize and resize functions can be used as
discussed previously. However the function as.matrix does not work in run code.

Here is a run function to use these modelValues:

runFunction = function(){
## gets the number of rows of propSamples

m <- getsize(propModelValues)

## resized savedWeights to have the proper rows

resize(savedWeights, m)

for(i in 1:m){
## Copying from propSamples to model.

## Node names of propSamples and model must match!

nimCopy(from = propModelValues, to = model, row = i,

nodes = modelNodes, logProb = FALSE)

## calculates the log likelihood of the model

targLL <- calculate(model)

## retreaves the saved log likelihood from the proposed model

propLL <- propModelValues['propLL',i][1]

## saves the importance weight for the i-th sample

savedWeights['w', i][1] <<- exp(targLL - propLL)

}
## does not return anything

}

Once the nimbleFunction is built, the modelValues object can be accessed using using $,
which is shown in more detail below. In fact, since modelValues, like most NIMBLE objects,
are reference class objects, one can get a reference to them before the function is executed
and then use that reference afterwards.

## Simple model and modelValue for example

targetModelCode <- nimbleCode({
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x ~ dnorm(0,1)

for(i in 1:4)

y[i] ~ dnorm(0,1)

})

## Code for proposal model

propModelCode <- nimbleCode({
x ~ dnorm(0,2)

for(i in 1:4)

y[i] ~ dnorm(0,2)

})

## Building R models

targetModel = nimbleModel(targetModelCode, check = FALSE)

## defining model...

## building model...

## model building finished

propModel = nimbleModel(propModelCode, check = FALSE)

## defining model...

## building model...

## model building finished

cTargetModel = compileNimble(targetModel)

cPropModel = compileNimble(propModel)

sampleMVSpec = modelValuesSpec(vars = c('x', 'y', 'propLL'),

types = c('double', 'double', 'double'),

sizes = list(x = 1, y = 4, propLL = 1) )

sampleMV <- modelValues(sampleMVSpec)

## nimbleFunction for generating proposal sample

PropSamp_Gen <- nimbleFunction(

setup = function(mv, propModel){
nodeNames <- propModel$getNodeNames()

},
run = function(m = integer() ){

resize(mv, m)

for(i in 1:m){
simulate(propModel)

nimCopy(from = propModel, to = mv, nodes = nodeNames, row = i)

mv['propLL', i][1] <<- calculate(propModel)
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}
}
)

## nimbleFunction for calculating importance weights

## Recylcing setupFunction and runFunction as defined in earlier example

impWeights_Gen <- nimbleFunction(setup = setupFunction,

run = runFunction)

## Making instances of nimbleFunctions

## Note that both functions share the same modelValues object

RPropSamp <- PropSamp_Gen(sampleMV, propModel)

RImpWeights <- impWeights_Gen(sampleMV, targetModel)

# Compiling

CPropSamp <- compileNimble(RPropSamp, project = propModel)

CImpWeights <- compileNimble(RImpWeights, project = targetModel)

#Generating and saving proposal sample of size 10

CPropSamp$run(10)

## NULL

## Calculating the importance weights and saving to mv

CImpWeights$run()

## NULL

## Retrieving the modelValues objects

## Extracted objects are C-based modelValues objects

savedPropSamp_1 = CImpWeights$propModelValues

savedPropSamp_2 = CPropSamp$mv

# Subtle note: savedPropSamp_1 and savedPropSamp_2

# both provide interface to the same compiled modelValues objects!

# This is because they were both built from sampleMV.

savedPropSamp_1['x',1]

## [1] -0.09301016

savedPropSamp_2['x',1]

## [1] -0.09301016
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savedPropSamp_1['x',1] <- 0 ## example of directly setting a value

savedPropSamp_2['x',1]

## [1] 0

## Viewing the saved importance weights

savedWeights <- CImpWeights$savedWeights

unlist(savedWeights[['w']])

## [1] 0.2605783 0.3356819 0.3495975 0.5885002 3.1004167 0.7498434

## [7] 0.1952209 0.4391091 0.5302746 0.8136953

#Viewing first 3 rows. Note that savedPropSsamp_1['x', 1] was altered

as.matrix(savedPropSamp_1)[1:3, ]

## propLL[1] x[1] y[1] y[2] y[3]

## [1,] -3.637857 0.0000000 0.621395144 -0.2282318 -0.30055870

## [2,] -4.144378 -0.1578032 -0.050844789 0.2108267 -0.84501521

## [3,] -4.225615 0.6333329 -0.001691592 0.0151157 -0.09695661

## y[4]

## [1,] 0.4886966

## [2,] 0.7046754

## [3,] -0.9762416

Importance sampling could also be written using simple vectors for the weights, but we
illustrated putting them in a modelValues object along with model variables.

9.5.5 Using model variables and modelValues in expressions

Each way of accessing a variable, node, or modelValues can be used amid mathematical
expressions, including with indexing, or passed to another nimbleFunction as an argument.
For example, the following two statements would be valid:

model[['x[2:8, ]']][2:4, 1:3] %*% Z

if Z is a vector or matrix, and

C[6:10] <- mv[v, i][1:5, k] + B

if B is a vector or matrix.
The NIMBLE language allows scalars, but models defined from BUGS code are never

created as purely scalar nodes. Instead, a single node such as defined by z ∼ dnorm(0,

1) is implemented as a vector of length 1, similar to R. When using z via model$z or
model[[‘z’]], NIMBLE will try to do the right thing by treating this as a scalar. In the
event of problems7, a more explicit way to access z is model$z[1] or model[[‘z’]][1].

7please tell us!
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9.5.6 Getting and setting more than one model node or variable
at a time using values

Sometimes it is useful to set a collection of nodes or variables at one time. For example, one
might want a nimbleFunction that will serve as the objective function for an optimizer. The
input to the nimbleFunction would be a vector, which should be used to fill a collection of
nodes in the model before calculating their log probabilities. NIMBLE has two ways to do
this, one of which was set up during development and may be deprecated in the future.

The recommended newer way is:

P <- values(model, nodes)

values(model, nodes) <- P

where the first line would assign the collection of values from nodes into P, and the
second would to the inverse. In both cases, values from nodes with 2 or more dimensions
are flattened into a vector in column-wise order.

The older syntax, which may be deprecated in the future, is

getValues(P, model, nodes)

setValues(P, model, nodes)

These are equivalent to the two previous lines. Note that getValues modifies P in the
calling environment.

With the new notation, values(model, nodes) may appear as a vector in other expres-
sions, e.g. Y <- A %*% values(model, nodes) + b.

9.5.7 Basic flow control: if-then-else, for, and while

These basic control flow structures use the same syntax as in R. However, for-loops are
limited to sequential integer indexing. For example, for(i in 2:5) {...} works as it
does in R. Decreasing index sequences are not allowed.

We plan to include more flexible for-loops in the future, but for now we’ve included just
one additional useful feature: for(i in seq along(NFL)) will work as in R, where NFL is
a nimbleFunctionList. This is described below.

9.5.8 How numeric types work

Numeric types in NIMBLE are much less flexible than in R, a reflection of the fact that
NIMBLE code can be compiled into C++8. In NIMBLE, the type of a numeric object refers
to the number of dimensions and the numeric type of the elements. In v0.4, objects from
0 (scalar) to 4 dimensions are supported, and the numeric types integer and double are
supported. In addition the type logical is supported for scalars only. While the number of
dimensions cannot change during run-time, numeric objects can be resized using setSize

or by full (non-indexed) assignment.

8C++ is a statically typed language, which means the type of a variable cannot change.
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When possible, NIMBLE will determine the type of a variable for you. In other cases
you must declare the type. The rules are as follows:

• For numeric variables from the setup function that appear in the run function or
other member functions (or are declared in setupOutputs): the type is determined
from the values created by the setup code. The types created by setup code must be
consistent across all specializations of the nimbleFunction. For example if X is created
as a matrix (2-dimensional double) in one specialization but as a vector (1-dimensional
double) in another, there will be a problem during compilation. The sizes may differ
in each specialization.
Treatment of vectors of length 1 presents special challenges because they could be
treated as scalars or vectors. Currently they are treated as scalars. If you want a
vector, ensure that the length is greater than 1 in the setup code and then use setSize
in the run-time code.
• In run code, when a numeric variable is created by assignment, its type is determined

by that assignment. Subsequent uses of that variable must be consistent with that
type.
• If the first uses of a variable involves indexing, the type must be declared explicitly,

using declare, before using it. In addition, its size must be set before assigning
into it. Sizes can be included in the declare() statement, but if so they should not
subsequently change. If a variable may have its size changed during execution, then
the declare statement should omit the size argument, and a separate call to setSize

should be used to set the initial size(s).

9.5.9 Querying and changing sizes

Sizes can be queried as follows:

• length behaves like R’s length function. It returns the entire length of X. That means
if X is multivariate, length returns the product of the sizes in each dimension.
• dim, which has synonym nimDim, behaves like R’s dim function for matrices or arrays,

and like R’s length function for vectors. In other words, regardless of whether the
number of dimensions is 1 or more, it returns a vector of the sizes. Using dim vs.
nimDim is a personal choice, but if you use dim, you should keep in mind that it
behaves differently from R’s dim.

– A quirky limitation in v0.4: It not currently possible to assign the results from
nimDim to another object using vector assignment. So the only practical way to use
nimDim is to extract elements immediately, such as nimDim(X)[1], nimDim(X)[2],
etc.

Sizes can be changed using:

• setSize(X, size1, size2, ...)

where size1, size2 etc. provide the sizes of as many dimensions as needed by X.
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9.5.10 Basic math and linear algebra

NIMBLE uses the Eigen library in C++ to accomplish linear algebra. In v0.4, we use a lot
of Eigen’s capabilities, but not all of them. The supported operations are given in Tables
5.4-5.5.

No vectorized operations other than assignment are supported for more than two di-
mensions in v0.4. That means A = B + C will work only if B and C have dimensions ≤
2.

Managing dimensions and sizes: asRow, asCol, and dropping dimensions

It can be tricky to determine the dimensions returned by a linear algebra expression. As
much as possible, NIMBLE behaves like R, but in some cases this is not possible because R
uses run-time information while NIMBLE must determine dimensions at compile-time.

Suppose v1 and v2 are vectors, and M1 is a matrix. Then

• v1 + M1 generates a compilation error unless one dimension of M1 is known at compile-
time to be 1. If so, then v1 is promoted to a 1-row or 1-column matrix to conform
with M1, and the result is a matrix of the same sizes. This behavior occurs for all
component-wise binary functions.
• v1 %*% M1 defaults to promoting v1 to a 1-row matrix, unless it is known at compile-

time that M1 has 1 row, in which case v1 is promoted to a 1-column matrix.
• M1 %*% v1 defaults to promoting v1 to a 1-column matrix, unless it is known at

compile time that M1 has 1 column, in which case v1 is promoted to a 1-row matrix.
• v1 %*% v2 promotes v1 to a 1-row matrix and v2 to a 1-column matrix, so the

returned values is a 1x1 matrix with the inner product of v1 and v2.
• asRow(v1) explicitly promotes v1 to a 1-row matrix. Therefore v1 %*% asRow(v2)

gives the outer product of v1 and v2.
• asCol(v1) explicitly promotes v1 to a 1-column matrix.
• The default promotion for a vector is to a 1-column matrix. Therefore, v1 %*% t(v2)

is equivalent to v1 %*% asRow(v2) .
• When indexing, dimensions with scalar indices will be dropped. For example, M1[1,]

and M1[,1] are both vectors.
• The left-hand side of an assignment can use indexing, but if so it must already be

correctly sized for the result. For example, Y[5:10, 20:30] <- model$x will not
work – and could crash your R session with a segmentation fault – if Y is not already
at least 10x30 in size.

Here are some examples to illustrate the above points, assuming M2 is a square matrix.

• Y <- v1 + M2 %*% v2 will return a 1-column matrix. If Y is created by this statement,
it will be a 2-dimensional variable. If Y already exists, it must already be 2-dimesional,
and it will be automatically re-sized for the result.
• Y <- v1 + (M2 %*% v2)[,1] will return a vector. Y will either be created as a vector

or must already exist as a vector and will be re-sized for the result.
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Size warnings and the potential for crashes

For matrix algebra, NIMBLE cannot ensure perfect behavior because sizes are not known
until run-time. Therefore, it is possible for you to write code that will crash your R session.
In v0.4, NIMBLE attempts to issue warning if sizes are not compatible, but it does not halt
execution. Therefore, if you execute A <- M1 % * % M2, and M1 and M2 are not compatible
for matrix multiplication, NIMBLE will output a warning that the number of rows of M1
does not match the number of columns of M2. After that warning the statement will be
executed and may result in a crash. Another easy way to write code that will crash is to
do things like Y[5:10, 20:30] <- model$x without ensuring Y is at least 10x30. In the
future we hope to prevent crashes, but in v0.4 we limit ourselves to trying to provide useful
information.

9.5.11 Including other methods in a nimbleFunction

Other methods can be included with the methods argument to nimbleFunction. These
methods can use the objects created in setup code in just the same ways as the run function.
In fact, the run function is just a default main method name.

methodsDemo <- nimbleFunction(

setup = function() {sharedValue <- 1},
run = function(x = double(1)) {

print('sharedValues = ', sharedValue, '\n')
increment()

print('sharedValues = ', sharedValue, '\n')
A <- times(5)

return(A * x)

returnType(double(1))

},
methods = list(

increment = function() {
sharedValue <<- sharedValue + 1

},
times = function(factor = double()) {

return(factor * sharedValue)

returnType(double())

}))

methodsDemo1 <- methodsDemo()

methodsDemo1$run(1:10)

## sharedValues = 1

##

## sharedValues = 2

## [1] 10 20 30 40 50 60 70 80 90 100
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methodsDemo1$sharedValue <- 1

CmethodsDemo1 <- compileNimble(methodsDemo1)

CmethodsDemo1$run(1:10)

## sharedValues = 1

##

## sharedValues = 2

## [1] 10 20 30 40 50 60 70 80 90 100

9.5.12 Using other nimbleFunctions

One nimbleFunction can use another nimbleFunction that was passed to it as a setup argu-
ment or was created in the setup function. This can be an effective way to program. When
a nimbleFunction needs to access a setup variable or method of another nimbleFunction, use
$.

usePreviousDemo <- nimbleFunction(

setup = function(initialSharedValue) {
myMethodsDemo <- methodsDemo()

},
run = function(x = double(1)) {

myMethodsDemo$sharedValue <<- initialSharedValue

print(myMethodsDemo$sharedValue)

A <- myMethodsDemo$run(x[1:5])

print(A)

B <- myMethodsDemo$times(10)

return(B)

returnType(double())

})

usePreviousDemo1 <- usePreviousDemo(2)

usePreviousDemo1$run(1:10)

## 2

## sharedValues = 2

##

## sharedValues = 3

##

## 15 30 45 60 75

## [1] 30

CusePreviousDemo1 <- compileNimble(usePreviousDemo1)

CusePreviousDemo1$run(1:10)
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## 2

## sharedValues = 2

##

## sharedValues = 3

##

## 15

## 30

## 45

## 60

## 75

## [1] 30

Note that the output from the print calls in the compiled function match those from
the uncompiled function when run in an R session. It may not be shown here because this
document is created with knitr and for some reason output printed from C++ does not
make it into knitr output.

9.5.13 Virtual nimbleFunctions and nimbleFunctionLists

Often it is useful for one nimbleFunction to have a list of other nimbleFunctions that have
methods with the same arguments and return types. For example, NIMBLE’s MCMC con-
tains a list of samplers that are each nimbleFunctions.

To make such a list, NIMBLE provides a way to declare the arguments and return
types of methods: virtual nimbleFunctions created by nimbleFunctionVirtual. Other
nimbleFunctions can inherit from virtual nimbleFunctions, which in R is called “containing”
them. Readers familiar with object oriented programming will recognize this as a simple
class inheritance system. In v0.4 it is limited to simple, single-level inheritance.

Here is how it works:

baseClass <- nimbleFunctionVirtual(

run = function(x = double(1)) {returnType(double())},
methods = list(

foo = function() {returnType(double())}
))

derived1 <- nimbleFunction(

contains = baseClass,

setup = function(){},
run = function(x = double(1)) {

print('run 1')

return(sum(x))

returnType(double())

},
methods = list(
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foo = function() {
print('foo 1')

return(rnorm(1, 0, 1))

returnType(double())

}))

derived2 <- nimbleFunction(

contains = baseClass,

setup = function(){},
run = function(x = double(1)) {

print('run 2')

return(prod(x))

returnType(double())

},
methods = list(

foo = function() {
print('foo 2')

return(runif(1, 100, 200))

returnType(double())

}))

useThem <- nimbleFunction(

setup = function() {
nfl <- nimbleFunctionList(baseClass)

nfl[[1]] <- derived1()

nfl[[2]] <- derived2()

},
run = function(x = double(1)) {

for(i in seq_along(nfl)) {
print( nfl[[i]]$run(x) )

print( nfl[[i]]$foo() )

}
}
)

useThem1 <- useThem()

set.seed(0)

useThem1$run(1:5)

## run 1

## 15

## foo 1

## 1.262954

## run 2

## 120
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## foo 2

## 137.2124

CuseThem1 <- compileNimble(useThem1)

set.seed(0)

CuseThem1$run(1:5)

## run 1

## 15

## foo 1

## 1.26295

## run 2

## 120

## foo 2

## 137.212

## NULL

As in R, the seq along function is equivalent to 1:length(nimFunList) if length(nimFunList)
> 0, and it is an empty sequence if length(nimFunList) == 0.

Currently seq along works only for nimbleFunctionLists.
Virtual nimbleFunctions cannot define setup values to be inherited.

9.5.14 print and stop

As demonstrated above, the NIMBLE function print, or equivalently nimPrint, prints an
arbitrary set of outputs in order. The NIMBLE function stop, or equivalently nimStop,
throws control to R’s error-handling system and can take one string (character) argument.

9.5.15 Checking for user interrupts

When you write algorithms that will run for a long time in C++, you may want to explicitly
check whether a user has tried to interrupt the execution (e.g. by pressing Control-C).
Simply include checkInterrupt() in run code to do so. If there has been an interrupt, the
process with stop and return control to R.

9.5.16 Character objects

NIMBLE provides limited uses of character objects in run code. Character vectors created
in setup code will be available in run code, but the only thing you can really do with them
is include them in a print or stop statement.

Note that character vectors of model node and variable names are processed during
compilation. For example, in model[[node]], node may be a character object, and the
NIMBLE compiler processes this differently than print(‘‘The node name was ’’, node).
In the former, the NIMBLE compiler sets up a C++ pointer directly to the node in the model,
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so that the character content of node is never needed in C++. In the latter, node is used as
a C++ string and therefore is needed in C++.

9.5.17 Alternative keywords for some functions

NIMBLE uses some keywords, such as dim and print, in ways similar but not identical to
R. In addition, there are some keywords in NIMBLE that have the same names as really
different R functions. For example, step is part of the BUGS language, but it is also an R
function for stepwise model selection. And equals is part of the BUGS language but is also
used in the testthat package, which we use in testing NIMBLE.

The way NIMBLE handles this to try to avoid conflicts is to replace some keywords
immediately upon creating a nimbleFunction. These replacements include

• copy → nimCopy

• dim → nimDim

• print → nimPrint

• step → nimStep

• equals → nimEquals

• round → nimRound

• stop → nimStop

This system gives programmers the choice between using the keywords like nimPrint

directly, to avoid confusion in their own code about which “print” is being used, or to use
the more intuitive keywords like print but remember that they are not the same as R’s
functions.

9.5.18 User-defined data structures

NIMBLE does not explicitly have user-defined data structures, but one can use nimbleFunc-
tions to achieve a similar effect. To do so, one can define setup code with whatever variables
are wanted and ensure they are compiled using setupOutputs. Here is an example:

dataNF <- nimbleFunction(

setup = function() {
X <- 1

Y <- as.numeric(c(1, 2)) ## will be a scalar if all sizes are 1

Z <- matrix(as.numeric(1:4), nrow = 2) ## will be a scalar is all sizes are 1

setupOutputs(X, Y, Z)

})

useDataNF <- nimbleFunction(

setup = function(myDataNF) {},
run = function(newX = double(), newY = double(1), newZ = double(2)) {

myDataNF$X <<- newX

myDataNF$Y <<- newY
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myDataNF$Z <<- newZ

})

myDataNF <- dataNF()

myUseDataNF <- useDataNF(myDataNF)

myUseDataNF$run(as.numeric(100), as.numeric(100:110), matrix(as.numeric(101:120), nrow = 2))

myDataNF$X

## [1] 100

myDataNF$Y

## [1] 100 101 102 103 104 105 106 107 108 109 110

myDataNF$Z

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 101 103 105 107 109 111 113 115 117 119

## [2,] 102 104 106 108 110 112 114 116 118 120

myUseDataNF$myDataNF$X

## [1] 100

nimbleOptions(useMultiInterfaceForNestedNimbleFunctions = FALSE)

CmyUseDataNF <- compileNimble(myUseDataNF)

CmyUseDataNF$run(-100, -(100:110), matrix(-(101:120), nrow = 2))

## NULL

CmyDataNF <- CmyUseDataNF$myDataNF

CmyDataNF$X

## [1] -100

CmyDataNF$Y

## [1] -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110

CmyDataNF$Z

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] -101 -103 -105 -107 -109 -111 -113 -115 -117 -119

## [2,] -102 -104 -106 -108 -110 -112 -114 -116 -118 -120

You’ll notice that:
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• After execution of the compiled function, access to the X, Y, and Z is the same as for
the uncompiled case. This occurs because CmyUseDataNF is an interface to the com-
piled version of myUseDataNF, and it provides access to member objects and functions.
In this case, one member object is myDataNF, which is an interface to the compiled
version of myUseDataNF$myDataNF, which in turn provides access to X, Y, and Z. To
reduce memory use, NIMBLE defaults to not providing full interfaces to nested nim-
bleFunctions like myUseDataNF$myDataNF. In this example we made it provide a full
interfaces by setting the useMultiInterfaceForNestedNimbleFunctions option via
nimbleOptions as shown. If we had left that option TRUE (its default value), we
could still get to the values of interest using

valueInCompiledNimbleFunction(CmyDataNF, 'X')

• We need to take care that at the time of compilation, the X, Y and Z values contain
doubles via as.numeric so that they are not compiled as integer objects.
• The myDataNF could be created in the setup code. We just provided it as a setup

argument to illustrate that option.

9.5.19 Distribution functions

Distribution “d”, “r”, “p”, and “q” functions can all be used from nimbleFunctions (and in
BUGS model code), but the care is needed in the syntax.

• We support only the canonical NIMBLE parameterization, as listed below (with a
small number of exceptions, also listed).
• The names of the distributions are the names used under the hood in NIMBLE and

differ from the standard BUGS distribution names.
• Currently “r” functions only return one random draw at a time, and the first argument

must always be 1.
• For the multivariate normal and Wishart distributions the prec param or scale param

argument must be provided, indicating when a covariance or precision matrix has been
given.

User-defined distributions can also be used from nimbleFunctions. Arguments are matched
by order or by name (if given). If omitted, default argument values based on the standard R
distribution functions will be used. Standard arguments to distribution functions in R (log,
log.p, lower.tail) can be used and take the usual default values as in R. User-supplied
distributions are handled analogously with regard to matching by position and use of defaults
(when provided via the nimbleFunction run-time arguments) (Section 5.2.5).

Supported distributions include:

• dbinom(size, prob)

• dcat(prob)

• dmulti(size, prob)

• dnbinom(size, prob)

• dpois(lambda)
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• dbeta(shape1, shape2)

• dchisq(df)

• dexp(rate)

• dexp nimble(rate)

• dexp nimble(scale)

• dgamma(shape, rate)

• dgamma(shape, scale)

• dlnorm(meanlog, sdlog)

• dlogis(location, scale)

• dnorm(mean, sd)

• dt nonstandard(df, mu, sigma)

• dt(df)

• dunif(min, max)

• dweibull(shape, scale)

• ddirch(alpha)

• dmnorm chol(mean, cholesky, prec param)

• dwish chol(cholesky, df, scale param)

In the last two, cholesky stands for Cholesky decomposition of the relevant matrix;
prec param indicates whether the Cholesky is of a precision matrix or covariance matrix;
and scale param indicates whether the Cholesky is of a scale matrix or an inverse scale
matrix.

In a future release, we will also extend the alternative parameterizations given in Section
5.2.2 to nimbleFunctions.

9.6 Some options for reducing memory usage

NIMBLE can make a lot of objects in its processing, and some of them use R features like ref-
erence classes that are not light in memory usage. We have noticed that building large models
can use lots of memory. To help alleviate this, we provide two options, which can be con-
trolled via nimbleOptions. As noted above, the option useMultiInterfaceForNestedNimbleFunctions

defaults to TRUE, which means NIMBLE will not build full interfaces to compiled nimble-
Functions that ony appear within other nimbleFunctions. If you want access to all such nim-
bleFunctionsm use useMultiInterfaceForNestedNimbleFunctions = FALSE. The option
clearNimbleFunctionsAfterCompiling is more drastic, and it is experimental, so “buyer
beware”. This will clear much of the contents of an uncompiled nimbleFunction object after
it has been compiled in an effort to free some memory. We expect to be able to keep making
NIMBLE more efficient – faster execution and lower memory use – in the future.
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