
NIMBLE User Manual
NIMBLE Development Team

Version 1.2.1

https://r-nimble.org
https://github.com/nimble-dev/nimble

https://r-nimble.org
https://github.com/nimble-dev/nimble

2

Contents

I Introduction 9

1 Welcome to NIMBLE 11
1.1 What does NIMBLE do? . 11
1.2 How to use this manual . 12

2 Lightning introduction 13
2.1 A brief example . 13
2.2 Creating a model . 13
2.3 Compiling the model . 17
2.4 One-line invocation of MCMC . 17
2.5 Creating, compiling and running a basic MCMC configuration 19
2.6 Customizing the MCMC . 20
2.7 Running MCEM . 22
2.8 Creating your own functions . 23

3 More introduction 27
3.1 NIMBLE adopts and extends the BUGS language for specifying models 27
3.2 nimbleFunctions for writing algorithms . 28
3.3 The NIMBLE algorithm library . 29

4 Installing NIMBLE 31
4.1 Requirements to run NIMBLE . 31
4.2 Installing a C++ compiler for NIMBLE to use . 31

4.2.1 MacOS . 31
4.2.2 Linux . 32
4.2.3 Windows . 32

4.3 Installing the NIMBLE package . 32
4.4 Troubleshooting installation problems . 32
4.5 Customizing your installation . 33

4.5.1 Using your own copy of Eigen . 34
4.5.2 Using libnimble . 34
4.5.3 BLAS and LAPACK . 34
4.5.4 Customizing compilation of the NIMBLE-generated C++ 35

3

4 CONTENTS

II Models in NIMBLE 37

5 Writing models in NIMBLE’s dialect of BUGS 39
5.1 Comparison to BUGS dialects supported by WinBUGS, OpenBUGS and JAGS . . . 39

5.1.1 Supported features of BUGS and JAGS . 39
5.1.2 NIMBLE’s Extensions to BUGS and JAGS 39
5.1.3 Not-supported features of BUGS and JAGS 40

5.2 Writing models . 41
5.2.1 Declaring stochastic and deterministic nodes 41
5.2.2 More kinds of BUGS declarations . 43
5.2.3 Vectorized versus scalar declarations . 45
5.2.4 Available distributions . 46
5.2.5 Available BUGS language functions . 51
5.2.6 Available link functions . 53
5.2.7 Truncation, censoring, and constraints . 54

6 Building and using models 57
6.1 Creating model objects . 57

6.1.1 Using nimbleModel to create a model . 57
6.1.2 Creating a model from standard BUGS and JAGS input files 62
6.1.3 Making multiple instances from the same model definition 62

6.2 NIMBLE models are objects you can query and manipulate 63
6.2.1 What are variables and nodes? . 63
6.2.2 Determining the nodes and variables in a model 64
6.2.3 Accessing nodes . 64
6.2.4 How nodes are named . 65
6.2.5 Why use node names? . 66
6.2.6 Checking if a node holds data . 66

6.3 Using models in parallel . 66

III Algorithms in NIMBLE 69

7 MCMC 71
7.1 One-line invocation of MCMC: nimbleMCMC . 72
7.2 The MCMC configuration . 73

7.2.1 Default MCMC configuration . 73
7.2.2 Customizing the MCMC configuration . 75

7.3 Building and compiling the MCMC . 81
7.4 Initializing MCMC . 82
7.5 User-friendly execution of MCMC algorithms: runMCMC 83
7.6 Running the MCMC . 84

7.6.1 Rerunning versus restarting an MCMC . 84
7.6.2 Measuring sampler computation times: getTimes 85
7.6.3 Assessing the adaption process of RW and RW_block samplers 85

7.7 Extracting MCMC samples . 85
7.8 Calculating WAIC . 86
7.9 k-fold cross-validation . 87

CONTENTS 5

7.10 Variable selection using Reversible Jump MCMC . 88
7.10.1 Using indicator variables . 89
7.10.2 Without indicator variables . 91

7.11 Samplers provided with NIMBLE . 92
7.11.1 Conjugate (‘Gibbs’) samplers . 92
7.11.2 Hamiltonian Monte Carlo (HMC) . 93
7.11.3 Particle filter samplers . 97
7.11.4 Customized log-likelihood evaluations: RW_llFunction sampler 97

7.12 Detailed MCMC example: litters . 98
7.13 Comparing different MCMCs with MCMCsuite and compareMCMCs 101
7.14 Running MCMC chains in parallel . 101

8 Particle Filters, PMCMC, MCEM, Laplace approximation and quadrature 103
8.1 Particle filters / sequential Monte Carlo and iterated filtering 103

8.1.1 Filtering algorithms . 103
8.1.2 Particle MCMC (PMCMC) . 108

8.2 Monte Carlo Expectation Maximization (MCEM) . 110
8.2.1 Estimating the asymptotic covariance From MCEM 112

8.3 Laplace approximation and adaptive Gauss-Hermite quadrature 112

9 Spatial models 113
9.1 Intrinsic Gaussian CAR model: dcar_normal . 113

9.1.1 Specification and density . 113
9.1.2 Example . 115

9.2 Proper Gaussian CAR model: dcar_proper . 116
9.2.1 Specification and density . 116
9.2.2 Example . 117

9.3 MCMC Sampling of CAR models . 119
9.3.1 Initial values . 119
9.3.2 Zero-neighbor regions . 119
9.3.3 Zero-mean constraint . 120

10 Bayesian nonparametric models 121
10.1 Bayesian nonparametric mixture models . 121
10.2 Chinese Restaurant Process model . 122

10.2.1 Specification and density . 122
10.2.2 Example . 123
10.2.3 Extensions . 124

10.3 Stick-breaking model . 125
10.3.1 Specification and function . 125
10.3.2 Example . 126

10.4 MCMC sampling of BNP models . 127
10.4.1 Sampling CRP models . 127
10.4.2 Sampling stick-breaking models . 130

6 CONTENTS

IV Programming with NIMBLE 131

Overview 133

11 Writing simple nimbleFunctions 135
11.1 Introduction to simple nimbleFunctions . 135
11.2 R functions (or variants) implemented in NIMBLE 136

11.2.1 Finding help for NIMBLE’s versions of R functions 136
11.2.2 Basic operations . 136
11.2.3 Math and linear algebra . 138
11.2.4 Distribution functions . 141
11.2.5 Flow control: if-then-else, for, while, and stop 142
11.2.6 print and cat . 142
11.2.7 Checking for user interrupts: checkInterrupt 142
11.2.8 Optimization: optim and nimOptim . 142
11.2.9 Integration: integrate and nimIntegrate . 143
11.2.10‘nim’ synonyms for some functions . 144

11.3 How NIMBLE handles types of variables . 144
11.3.1 nimbleList data structures . 145
11.3.2 How numeric types work . 145

11.4 Declaring argument and return types . 148
11.5 Compiled nimbleFunctions pass arguments by reference 149
11.6 Calling external compiled code . 149
11.7 Calling uncompiled R functions from compiled nimbleFunctions 149

12 Creating user-defined distributions and functions for models 151
12.1 User-defined functions . 151
12.2 User-defined distributions . 153

12.2.1 Using registerDistributions for alternative parameterizations and providing
other information . 155

12.3 Advanced user-defined functions and distributions 156

13 Working with NIMBLE models 159
13.1 The variables and nodes in a NIMBLE model . 159

13.1.1 Determining the nodes in a model . 159
13.1.2 Understanding lifted nodes . 161
13.1.3 Determining dependencies in a model . 161

13.2 Accessing information about nodes and variables . 162
13.2.1 Getting distributional information about a node 162
13.2.2 Getting information about a distribution . 163
13.2.3 Getting distribution parameter values for a node 163
13.2.4 Getting distribution bounds for a node . 164

13.3 Carrying out model calculations . 165
13.3.1 Core model operations: calculation and simulation 165
13.3.2 Pre-defined nimbleFunctions for operating on model nodes: simNodes, calc-

Nodes, and getLogProbNodes . 167
13.3.3 Accessing log probabilities via logProb variables 168

CONTENTS 7

14 Data structures in NIMBLE 171
14.1 The modelValues data structure . 171

14.1.1 Creating modelValues objects . 171
14.1.2 Accessing contents of modelValues . 173

14.2 The nimbleList data structure . 177
14.2.1 Pre-defined nimbleList types . 179
14.2.2 Using eigen and svd in nimbleFunctions . 180

15 Writing nimbleFunctions to interact with models 183
15.1 Overview . 183
15.2 Using and compiling nimbleFunctions . 185
15.3 Writing setup code . 185

15.3.1 Useful tools for setup functions . 185
15.3.2 Accessing and modifying numeric values from setup 186
15.3.3 Determining numeric types in nimbleFunctions 186
15.3.4 Control of setup outputs . 186

15.4 Writing run code . 187
15.4.1 Driving models: calculate, calculateDiff, simulate, getLogProb 187
15.4.2 Getting and setting variable and node values 187
15.4.3 Getting parameter values and node bounds 190
15.4.4 Using modelValues objects . 190
15.4.5 Using model variables and modelValues in expressions 193
15.4.6 Including other methods in a nimbleFunction 193
15.4.7 Using other nimbleFunctions . 194
15.4.8 Virtual nimbleFunctions and nimbleFunctionLists 195
15.4.9 Character objects . 197
15.4.10 User-defined data structures . 198

15.5 Example: writing user-defined samplers to extend NIMBLE’s MCMC engine 199
15.5.1 User-defined samplers and posterior predictive nodes 201

15.6 Copying nimbleFunctions (and NIMBLE models) . 202
15.7 Debugging nimbleFunctions . 202
15.8 Timing nimbleFunctions with run.time . 203
15.9 Clearing and unloading compiled objects . 203
15.10Reducing memory usage . 204

V Automatic Derivatives in NIMBLE 205

16 Automatic Derivatives 207
16.1 How to turn on derivatives in a model . 208

16.1.1 Finish setting up the GLMM example . 208
16.2 How to use Laplace approximation and adaptive Gauss-Hermite quadrature 209
16.3 How to support derivatives in user-defined functions and distributions 211
16.4 What operations are and aren’t supported for AD 212
16.5 Basics of obtaining derivatives in nimbleFunctions 213

16.5.1 Checking derivatives with uncompiled execution 215
16.5.2 Holding some local variables out of derivative tracking 216
16.5.3 Using AD with multiple nimbleFunctions . 219

8 CONTENTS

16.5.4 Understanding more about how AD works: taping of operations 220
16.5.5 Resetting a nimDerivs call . 220
16.5.6 A note on performance benchmarking . 223

16.6 Advanced uses: double taping . 224
16.7 Derivatives involving model calculations . 225

16.7.1 Method 1: nimDerivs of model$calculate 226
16.7.2 Method 2: nimDerivs of a method that calls model$calculate 228

16.8 Parameter transformations . 231

17 Example: maximum likelihood estimation using optim with gradients from
nimDerivs. 233

Part I

Introduction

9

Chapter 1

Welcome to NIMBLE

NIMBLE is a system for building and sharing analysis methods for statistical models from R, espe-
cially for hierarchical models and computationally-intensive methods. While NIMBLE is embedded
in R, it goes beyond R by supporting separate programming of models and algorithms along with
compilation for fast execution.

As of version 1.2.1, NIMBLE has been around for a while and is reasonably stable, but we have
a lot of plans to expand and improve it. The algorithm library provides MCMC with a lot of
user control and ability to write new samplers easily. Other algorithms include Laplace approxima-
tion, adaptive Gauss-Hermite quadrature, and Monte Carlo Expectation Maximization (MCEM).
Some algorithms and model components are provided in separate packages, including nimbleHMC
(Hamiltonian Monte Carlo with the no U-turn sampler), nimbleSMC (particle filtering, particle
MCMC, iterated particle filtering, and ensemble Kalman Filter), nimbleEcology (ecological model
components), and nimbleSCR (spatial capture-recapture).

But NIMBLE is about much more than providing an algorithm library. It provides a language for
writing model-generic algorithms. We hope you will program in NIMBLE and make an R package
providing your method. Of course, NIMBLE is open source, so we also hope you’ll contribute to
its development.

Please join the mailing lists (see R-nimble.org/more/issues-and-groups) and help improve NIMBLE
by telling us what you want to do with it, what you like, and what could be better. We have a
lot of ideas for how to improve it, but we want your help and ideas too. You can also follow and
contribute to developer discussions on our GitHub repository.

If you use NIMBLE in your work, please cite us, as this helps justify past and future funding for
the development of NIMBLE. For more information, please call citation('nimble') in R.

1.1 What does NIMBLE do?

NIMBLE makes it easier to program statistical algorithms that will run efficiently and work on
many different models from R.

You can think of NIMBLE as comprising four pieces:

11

https://r-nimble.org/more/issues-and-groups
https://github.com/nimble-dev/nimble

12 CHAPTER 1. WELCOME TO NIMBLE

1. A system for writing statistical models flexibly, which is an extension of the BUGS language1.
2. A library of algorithms such as MCMC.
3. A language, called NIMBLE, embedded within and similar in style to R, for writing algorithms

that operate on models written in BUGS.
4. A compiler that generates C++ for your models and algorithms, compiles that C++, and

lets you use it seamlessly from R without knowing anything about C++.

NIMBLE stands for Numerical Inference for statistical Models for Bayesian and Likelihood Esti-
mation.

Although NIMBLE was motivated by algorithms for hierarchical statistical models, it’s useful for
other goals too. You could use it for simpler models. And since NIMBLE can automatically
compile R-like functions into C++ that use the Eigen library for fast linear algebra, you can use it
to program fast numerical functions without any model involved2.

One of the beauties of R is that many of the high-level analysis functions are themselves written in
R, so it is easy to see their code and modify them. The same is true for NIMBLE: the algorithms
are themselves written in the NIMBLE language.

1.2 How to use this manual
We suggest everyone start with the Lightning Introduction in Chapter 2.

Then, if you want to jump into using NIMBLE’s algorithms without learning about NIMBLE’s
programming system, go to Part II to learn how to build your model and Part III to learn how to
apply NIMBLE’s built-in algorithms to your model.

If you want to learn about NIMBLE programming (nimbleFunctions), go to Part IV. This teaches
how to program user-defined function or distributions to use in BUGS code, compile your R code
for faster operations, and write algorithms with NIMBLE. These algorithms could be specific algo-
rithms for your particular model (such as a user-defined MCMC sampler for a parameter in your
model) or general algorithms you can distribute to others. In fact the algorithms provided as part
of NIMBLE and described in Part III are written as nimbleFunctions.

1See Chapter 5 for information about NIMBLE’s version of BUGS.
2The packages Rcpp and RcppEigen provide different ways of connecting C++, the Eigen library and R. In those

packages you program directly in C++, while in NIMBLE you program in R in a nimbleFunction and the NIMBLE
compiler turns it into C++.

http://www.rcpp.org/

Chapter 2

Lightning introduction

2.1 A brief example
Here we’ll give a simple example of building a model and running some algorithms on the model,
as well as creating our own user-specified algorithm. The goal is to give you a sense for what one
can do in the system. Later sections will provide more detail.

We’ll use the pump model example from BUGS1. We could load the model from the standard BUGS
example file formats (Section 6.1.2), but instead we’ll show how to enter it directly in R.

In this ‘lightning introduction’ we will:

1. Create the model for the pump example.
2. Compile the model.
3. Create a basic MCMC configuration for the pump model.
4. Compile and run the MCMC
5. Customize the MCMC configuration and compile and run that.
6. Create, compile and run a Monte Carlo Expectation Maximization (MCEM) algorithm, which

illustrates some of the flexibility NIMBLE provides to combine R and NIMBLE.
7. Write a short nimbleFunction to generate simulations from designated nodes of any model.

2.2 Creating a model
First we define the model code, its constants, data, and initial values for MCMC.
pumpCode <- nimbleCode({

for (i in 1:N){
theta[i] ~ dgamma(alpha,beta)
lambda[i] <- theta[i]*t[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0)
beta ~ dgamma(0.1,1.0)

})

1The data set describes failure rates of some pumps.

13

14 CHAPTER 2. LIGHTNING INTRODUCTION

pumpConsts <- list(N = 10,
t = c(94.3, 15.7, 62.9, 126, 5.24,

31.4, 1.05, 1.05, 2.1, 10.5))

pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))

pumpInits <- list(alpha = 1, beta = 1,
theta = rep(0.1, pumpConsts$N))

Here x[i] is the number of failures recorded during a time duration of length t[i] for the i𝑡ℎ

pump. theta[i] is a failure rate, and the goal is estimate parameters alpha and beta. Now let’s
create the model and look at some of its nodes.
pump <- nimbleModel(code = pumpCode, name = "pump", constants = pumpConsts,

data = pumpData, inits = pumpInits)

pump$getNodeNames()

[1] "alpha" "beta" "lifted_d1_over_beta"
[4] "theta[1]" "theta[2]" "theta[3]"
[7] "theta[4]" "theta[5]" "theta[6]"
[10] "theta[7]" "theta[8]" "theta[9]"
[13] "theta[10]" "lambda[1]" "lambda[2]"
[16] "lambda[3]" "lambda[4]" "lambda[5]"
[19] "lambda[6]" "lambda[7]" "lambda[8]"
[22] "lambda[9]" "lambda[10]" "x[1]"
[25] "x[2]" "x[3]" "x[4]"
[28] "x[5]" "x[6]" "x[7]"
[31] "x[8]" "x[9]" "x[10]"
pump$x

[1] 5 1 5 14 3 19 1 1 4 22
pump$logProb_x

[1] -2.998011 -1.118924 -1.882686 -2.319466 -4.254550 -20.739651
[7] -2.358795 -2.358795 -9.630645 -48.447798
pump$alpha

[1] 1
pump$theta

[1] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
pump$lambda

[1] 9.430 1.570 6.290 12.600 0.524 3.140 0.105 0.105 0.210 1.050

Notice that in the list of nodes, NIMBLE has introduced a new node, lifted_d1_over_beta. We

2.2. CREATING A MODEL 15

call this a ‘lifted’ node. Like R, NIMBLE allows alternative parameterizations, such as the scale or
rate parameterization of the gamma distribution. Choice of parameterization can generate a lifted
node, as can using a link function or a distribution argument that is an expression. It’s helpful to
know why they exist, but you shouldn’t need to worry about them.

Thanks to the plotting capabilities of the igraph package that NIMBLE uses to represent the
directed acyclic graph, we can plot the model (Figure 2.1).
pump$plotGraph()

alpha

beta

lifted_d1_over_beta

theta[1]

theta[2]

theta[3]

theta[4]

theta[5]

theta[6]theta[7]

theta[8]

theta[9]

theta[10]
lambda[1]

lambda[2]

lambda[3]

lambda[4]

lambda[5]

lambda[6]
lambda[7]

lambda[8]

lambda[9]

lambda[10]
x[1]

x[2]

x[3]

x[4]

x[5]

x[6]
x[7]

x[8]

x[9]

x[10]

Figure 2.1: Directed Acyclic Graph plot of the pump model, thanks to the igraph package

You are in control of the model. By default, nimbleModel does its best to initialize a model, but
let’s say you want to re-initialize theta. To simulate from the prior for theta (overwriting the
initial values previously in the model) we first need to be sure the parent nodes of all theta[i]
nodes are fully initialized, including any non-stochastic nodes such as lifted nodes. We then use
the simulate function to simulate from the distribution for theta. Finally we use the calculate
function to calculate the dependencies of theta, namely lambda and the log probabilities of x to
ensure all parts of the model are up to date. First we show how to use the model’s getDependencies
method to query information about its graph.

16 CHAPTER 2. LIGHTNING INTRODUCTION

Show all dependencies of alpha and beta terminating in stochastic nodes
pump$getDependencies(c("alpha", "beta"))

[1] "alpha" "beta" "lifted_d1_over_beta"
[4] "theta[1]" "theta[2]" "theta[3]"
[7] "theta[4]" "theta[5]" "theta[6]"
[10] "theta[7]" "theta[8]" "theta[9]"
[13] "theta[10]"
Now show only the deterministic dependencies
pump$getDependencies(c("alpha", "beta"), determOnly = TRUE)

[1] "lifted_d1_over_beta"
Check that the lifted node was initialized.
pump[["lifted_d1_over_beta"]] # It was.

[1] 1
Now let's simulate new theta values
set.seed(1) # This makes the simulations here reproducible
pump$simulate("theta")
pump$theta # the new theta values

[1] 0.15514136 1.88240160 1.80451250 0.83617765 1.22254365 1.15835525
[7] 0.99001994 0.30737332 0.09461909 0.15720154
lambda and logProb_x haven't been re-calculated yet
pump$lambda # these are the same values as above

[1] 9.430 1.570 6.290 12.600 0.524 3.140 0.105 0.105 0.210 1.050
pump$logProb_x

[1] -2.998011 -1.118924 -1.882686 -2.319466 -4.254550 -20.739651
[7] -2.358795 -2.358795 -9.630645 -48.447798
pump$getLogProb("x") # The sum of logProb_x

[1] -96.10932
pump$calculate(pump$getDependencies(c("theta")))

[1] -262.204
pump$lambda # Now they have.

[1] 14.6298299 29.5537051 113.5038360 105.3583839 6.4061287 36.3723548
[7] 1.0395209 0.3227420 0.1987001 1.6506161
pump$logProb_x

[1] -6.002009 -26.167496 -94.632145 -65.346457 -2.626123 -7.429868
[7] -1.000761 -1.453644 -9.840589 -39.096527

2.3. COMPILING THE MODEL 17

Notice that the first getDependencies call returned dependencies from alpha and beta down to the
next stochastic nodes in the model. The second call requested only deterministic dependencies. The
call to pump$simulate("theta") expands "theta" to include all nodes in theta. After simulating
into theta, we can see that lambda and the log probabilities of x still reflect the old values of theta,
so we calculate them and then see that they have been updated.

2.3 Compiling the model
Next we compile the model, which means generating C++ code, compiling that code, and loading
it back into R with an object that can be used just like the uncompiled model. The values in
the compiled model will be initialized from those of the original model in R, but the original and
compiled models are distinct objects so any subsequent changes in one will not be reflected in the
other.
Cpump <- compileNimble(pump)
Cpump$theta

[1] 0.15514136 1.88240160 1.80451250 0.83617765 1.22254365 1.15835525
[7] 0.99001994 0.30737332 0.09461909 0.15720154

Note that the compiled model is used when running any NIMBLE algorithms via C++, so the
model needs to be compiled before (or at the same time as) any compilation of algorithms, such as
the compilation of the MCMC done in the next section.

2.4 One-line invocation of MCMC
The most direct approach to invoking NIMBLE’s MCMC engine is using the nimbleMCMC function.
This function would generally take the code, data, constants, and initial values as input, but it can
also accept the (compiled or uncompiled) model object as an argument. It provides a variety of
options for executing and controlling multiple chains of NIMBLE’s default MCMC algorithm, and
returning posterior samples, posterior summary statistics, and/or WAIC values.

For example, to execute two MCMC chains of 10,000 samples each, and return samples, summary
statistics, and WAIC values:
mcmc.out <- nimbleMCMC(code = pumpCode, constants = pumpConsts,

data = pumpData, inits = pumpInits,
nchains = 2, niter = 10000,
summary = TRUE, WAIC = TRUE,
monitors = c('alpha','beta','theta'))

[Warning] There are 7 individual pWAIC values that are greater than 0.4. This may indicate that the WAIC estimate is unstable (Vehtari et al., 2017), at least in cases without grouping of data nodes or multivariate data nodes.
names(mcmc.out)

[1] "samples" "summary" "WAIC"
mcmc.out$summary

$chain1
Mean Median St.Dev. 95%CI_low 95%CI_upp

18 CHAPTER 2. LIGHTNING INTRODUCTION

alpha 0.69804352 0.65835063 0.27037676 0.287898244 1.3140461
beta 0.92862598 0.82156847 0.54969128 0.183699137 2.2872696
theta[1] 0.06019274 0.05676327 0.02544956 0.021069950 0.1199230
theta[2] 0.10157737 0.08203988 0.07905076 0.008066869 0.3034085
theta[3] 0.08874755 0.08396502 0.03760562 0.031186960 0.1769982
theta[4] 0.11567784 0.11301465 0.03012598 0.064170937 0.1824525
theta[5] 0.60382223 0.54935089 0.31219612 0.159731108 1.3640771
theta[6] 0.61204831 0.60085518 0.13803302 0.372712375 0.9135269
theta[7] 0.90263434 0.70803389 0.73960182 0.074122175 2.7598261
theta[8] 0.89021051 0.70774794 0.72668155 0.072571029 2.8189252
theta[9] 1.57678136 1.44390008 0.76825189 0.455195149 3.4297368
theta[10] 1.98954127 1.96171250 0.42409802 1.241383787 2.9012192
##
$chain2
Mean Median St.Dev. 95%CI_low 95%CI_upp
alpha 0.69101961 0.65803654 0.26548378 0.277195564 1.2858148
beta 0.91627273 0.81434426 0.53750825 0.185772263 2.2702428
theta[1] 0.05937364 0.05611283 0.02461866 0.020956151 0.1161870
theta[2] 0.10017726 0.08116259 0.07855024 0.008266343 0.3010355
theta[3] 0.08908126 0.08390782 0.03704170 0.031330829 0.1736876
theta[4] 0.11592652 0.11356920 0.03064645 0.063595333 0.1829574
theta[5] 0.59755632 0.54329373 0.31871551 0.149286703 1.3748728
theta[6] 0.61080189 0.59946693 0.13804343 0.371373877 0.9097319
theta[7] 0.89902759 0.70901502 0.72930369 0.076243503 2.7441445
theta[8] 0.89954594 0.70727079 0.73345905 0.071250926 2.8054633
theta[9] 1.57530029 1.45005738 0.75242164 0.469959364 3.3502795
theta[10] 1.98911473 1.96227061 0.42298189 1.246910723 2.9102326
##
$all.chains
Mean Median St.Dev. 95%CI_low 95%CI_upp
alpha 0.69453156 0.65803654 0.26795776 0.28329854 1.2999319
beta 0.92244935 0.81828160 0.54365539 0.18549077 2.2785444
theta[1] 0.05978319 0.05646474 0.02504028 0.02102807 0.1183433
theta[2] 0.10087731 0.08162361 0.07880204 0.00811108 0.3017967
theta[3] 0.08891440 0.08394667 0.03732417 0.03123228 0.1749967
theta[4] 0.11580218 0.11326039 0.03038683 0.06385253 0.1827382
theta[5] 0.60068928 0.54668011 0.31548032 0.15363752 1.3686801
theta[6] 0.61142510 0.60015416 0.13803618 0.37203765 0.9122467
theta[7] 0.90083096 0.70852800 0.73445465 0.07550465 2.7534885
theta[8] 0.89487822 0.70761105 0.73007484 0.07211191 2.8067373
theta[9] 1.57604083 1.44719278 0.76035931 0.46374515 3.3866706
theta[10] 1.98932800 1.96195345 0.42352979 1.24334249 2.9068229
mcmc.out$WAIC

nimbleList object of type waicNimbleList
Field "WAIC":
[1] 48.69896

2.5. CREATING, COMPILING AND RUNNING A BASIC MCMC CONFIGURATION 19

Field "lppd":
[1] -19.99653
Field "pWAIC":
[1] 4.352945

See Section 7.1 or help(nimbleMCMC) for more details about using nimbleMCMC.

Note that the WAIC value varies depending on what quantities are treated as parameters. See
Section 7.8 or help(waic) for more details.

2.5 Creating, compiling and running a basic MCMC configuration

At this point we have initial values for all of the nodes in the model, and we have both the original
and compiled versions of the model. As a first algorithm to try on our model, let’s use NIMBLE’s
default MCMC. Note that conjugate relationships are detected for all nodes except for alpha, on
which the default sampler is a random walk Metropolis sampler.
pumpConf <- configureMCMC(pump, print = TRUE)

===== Monitors =====
thin = 1: alpha, beta
===== Samplers =====
RW sampler (1)
- alpha
conjugate sampler (11)
- beta
- theta[] (10 elements)
pumpConf$addMonitors(c("alpha", "beta", "theta"))

thin = 1: alpha, beta, theta
pumpMCMC <- buildMCMC(pumpConf)
CpumpMCMC <- compileNimble(pumpMCMC, project = pump)

niter <- 1000
set.seed(1)
samples <- runMCMC(CpumpMCMC, niter = niter)

par(mfrow = c(1, 4), mai = c(.6, .4, .1, .2))
plot(samples[, "alpha"], type = "l", xlab = "iteration",

ylab = expression(alpha))
plot(samples[, "beta"], type = "l", xlab = "iteration",

ylab = expression(beta))
plot(samples[, "alpha"], samples[, "beta"], xlab = expression(alpha),

ylab = expression(beta))
plot(samples[, "theta[1]"], type = "l", xlab = "iteration",

ylab = expression(theta[1]))

20 CHAPTER 2. LIGHTNING INTRODUCTION

0 400 800

0.
5

1.
0

1.
5

iteration

α

0 400 800

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

iteration

β

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

α

β

0 400 800

0.
02

0.
06

0.
10

0.
14

iteration

θ 1

acf(samples[, "alpha"]) # plot autocorrelation of alpha sample
acf(samples[, "beta"]) # plot autocorrelation of beta sample

0 5 15 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series samples[, "alpha"]

0 5 15 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series samples[, "beta"]

Notice the posterior correlation between alpha and beta. A measure of the mixing for each is the
autocorrelation for each parameter, shown by the acf plots.

2.6 Customizing the MCMC
Let’s add an adaptive block sampler on alpha and beta jointly and see if that improves the mixing.
pumpConf$addSampler(target = c("alpha", "beta"), type = "RW_block",

control = list(adaptInterval = 100))

pumpMCMC2 <- buildMCMC(pumpConf)

need to reset the nimbleFunctions in order to add the new MCMC
CpumpNewMCMC <- compileNimble(pumpMCMC2, project = pump,

resetFunctions = TRUE)

set.seed(1)
CpumpNewMCMC$run(niter)
samplesNew <- as.matrix(CpumpNewMCMC$mvSamples)

2.6. CUSTOMIZING THE MCMC 21

par(mfrow = c(1, 4), mai = c(.6, .4, .1, .2))
plot(samplesNew[, "alpha"], type = "l", xlab = "iteration",

ylab = expression(alpha))
plot(samplesNew[, "beta"], type = "l", xlab = "iteration",

ylab = expression(beta))
plot(samplesNew[, "alpha"], samplesNew[, "beta"], xlab = expression(alpha),

ylab = expression(beta))
plot(samplesNew[, "theta[1]"], type = "l", xlab = "iteration",

ylab = expression(theta[1]))

0 400 800

0.
5

1.
0

1.
5

2.
0

iteration

α

0 400 800

0
1

2
3

iteration

β

0.5 1.5

0
1

2
3

α

β

0 400 800

0.
05

0.
10

0.
15

iteration

θ 1
acf(samplesNew[, "alpha"]) # plot autocorrelation of alpha sample
acf(samplesNew[, "beta"]) # plot autocorrelation of beta sample

0 5 15 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series samplesNew[, "alpha"]

0 5 15 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series samplesNew[, "beta"]

We can see that the block sampler has decreased the autocorrelation for both alpha and beta. Of
course these are just short runs, and what we are really interested in is the effective sample size of
the MCMC per computation time, but that’s not the point of this example.

Once you learn the MCMC system, you can write your own samplers and include them. The entire
system is written in nimbleFunctions.

22 CHAPTER 2. LIGHTNING INTRODUCTION

2.7 Running MCEM

NIMBLE is a system for working with algorithms, not just an MCMC engine. So let’s try maxi-
mizing the marginal likelihood for alpha and beta using Monte Carlo Expectation Maximization2.
pump2 <- nimbleModel(code = pumpCode, name = "pump", constants = pumpConsts,

data = pumpData, inits = pumpInits, buildDerivs = TRUE)

pumpMCEM <- buildMCEM(model = pump2, latentNodes = "theta[1:10]")
Cpump <- compileNimble(pump2)
CpumpMCEM <- compileNimble(pumpMCEM, project = pump2)

set.seed(1)
pumpMLE <- CpumpMCEM$findMLE()

[Note] Iteration Number: 1.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.810166
1.11657
[Note] Convergence Criterion: 0.655578.
[Note] Iteration Number: 2.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.807775
1.19848
[Note] Convergence Criterion: 0.0288968.
[Note] Iteration Number: 3.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.801477
1.20974
[Note] Convergence Criterion: 0.00314139.
[Note] Iteration Number: 4.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.814074
1.25737
[Note] Convergence Criterion: 0.00612404.
[Note] Iteration Number: 5.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.823345
1.26626
[Note] Convergence Criterion: 0.00132764.
[Note] Iteration Number: 6.

2Note that for this model, one could analytically integrate over theta and then numerically maximize the resulting
marginal likelihood.

2.8. CREATING YOUR OWN FUNCTIONS 23

[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.833545
1.29405
[Note] Convergence Criterion: 0.00251191.
[Note] Iteration Number: 7.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.81979
1.25567
[Note] Convergence Criterion: 0.00414933.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
Monte Carlo error too big: increasing MCMC sample size.
[Note] Iteration Number: 8.
[Note] Current number of MCMC iterations: 9400.
[Note] Parameter Estimates:
0.823025
1.26278
[Note] Convergence Criterion: 0.000165076.
pumpMLE$par

[1] 0.8230248 1.2627842

Both estimates are within 0.01 of the values reported by George et al. (1993)3. Some discrepancy
is to be expected since it is a Monte Carlo algorithm.

2.8 Creating your own functions
Now let’s see an example of writing our own algorithm and using it on the model. We’ll do
something simple: simulating multiple values for a designated set of nodes and calculating every
part of the model that depends on them. More details on programming in NIMBLE are in Part
IV.

Here is our nimbleFunction:
simNodesMany <- nimbleFunction(

setup = function(model, nodes) {
mv <- modelValues(model)
deps <- model$getDependencies(nodes)

3Table 2 of the paper accidentally swapped the two estimates.

24 CHAPTER 2. LIGHTNING INTRODUCTION

allNodes <- model$getNodeNames()
},
run = function(n = integer()) {

resize(mv, n)
for(i in 1:n) {

model$simulate(nodes)
model$calculate(deps)
copy(from = model, nodes = allNodes,

to = mv, rowTo = i, logProb = TRUE)
}

})

simNodesTheta1to5 <- simNodesMany(pump, "theta[1:5]")
simNodesTheta6to10 <- simNodesMany(pump, "theta[6:10]")

Here are a few things to notice about the nimbleFunction.

1. The setup function is written in R. It creates relevant information specific to our model for
use in the run-time code.

2. The setup code creates a modelValues object to hold multiple sets of values for variables in
the model provided.

3. The run function is written in NIMBLE. It carries out the calculations using the information
determined once for each set of model and nodes arguments by the setup code. The run-time
code is what will be compiled.

4. The run code requires type information about the argument n. In this case it is a scalar
integer.

5. The for-loop looks just like R, but only sequential integer iteration is allowed.
6. The functions calculate and simulate, which were introduced above in R, can be used in

NIMBLE.
7. The special function copy is used here to record values from the model into the modelValues

object.

8. Multiple instances, or ‘specializations’, can be made by calling simNodesMany with different ar-
guments. Above, simNodesTheta1to5 has been made by calling simNodesMany with the pump
model and nodes "theta[1:5]" as inputs to the setup function, while simNodesTheta6to10
differs by providing "theta[6:10]" as an argument. The returned objects are objects of a
uniquely generated R reference class with fields (member data) for the results of the setup
code and a run method (member function).

By the way, simNodesMany is very similar to a standard nimbleFunction provided with NIMBLE,
simNodesMV.

Now let’s execute this nimbleFunction in R, before compiling it.
set.seed(1) # make the calculation repeatable
pump$alpha <- pumpMLE$par[1]
pump$beta <- pumpMLE$par[2]

2.8. CREATING YOUR OWN FUNCTIONS 25

make sure to update deterministic dependencies of the altered nodes
pump$calculate(pump$getDependencies(c("alpha","beta"), determOnly = TRUE))

[1] 0
saveTheta <- pump$theta
simNodesTheta1to5$run(10)
simNodesTheta1to5$mv[["theta"]][1:2]

[[1]]
[1] 0.21801104 1.92849314 0.62185677 0.34145435 3.45061289 1.15835525
[7] 0.99001994 0.30737332 0.09461909 0.15720154
##
[[2]]
[1] 0.82620401 0.08776004 0.34362701 0.29479110 0.14167506 1.15835525
[7] 0.99001994 0.30737332 0.09461909 0.15720154
simNodesTheta1to5$mv[["logProb_x"]][1:2]

[[1]]
[1] -10.229575 -26.866943 -25.569779 -15.550101 -11.188351 -7.429868
[7] -1.000761 -1.453644 -9.840589 -39.096527
##
[[2]]
[1] -60.920692 -1.057321 -11.034892 -11.727789 -3.427830 -7.429868
[7] -1.000761 -1.453644 -9.840589 -39.096527

In this code we have initialized the values of alpha and beta to their MLE and then recorded
the theta values to use below. Then we have requested 10 simulations from simNodesTheta1to5.
Shown are the first two simulation results for theta and the log probabilities of x. Notice that
theta[6:10] and the corresponding log probabilities for x[6:10] are unchanged because the nodes
being simulated are only theta[1:5]. In R, this function runs slowly.

Finally, let’s compile the function and run that version.
CsimNodesTheta1to5 <- compileNimble(simNodesTheta1to5,

project = pump, resetFunctions = TRUE)
Cpump$alpha <- pumpMLE$par[1]
Cpump$beta <- pumpMLE$par[2]
Cpump$calculate(Cpump$getDependencies(c("alpha","beta"), determOnly = TRUE))

[1] 0
Cpump$theta <- saveTheta

set.seed(1)
CsimNodesTheta1to5$run(10)
CsimNodesTheta1to5$mv[["theta"]][1:2]

[[1]]
[1] 0.2387677 2.0746311 0.6709612 0.3715794 3.7047288 0.4910946 0.7019477
[8] 0.8661760 1.2961006 1.6388032

26 CHAPTER 2. LIGHTNING INTRODUCTION

##
[[2]]
[1] 0.89414647 0.09737063 0.37390994 0.32147204 0.15612022 0.49109463
[7] 0.70194774 0.86617604 1.29610065 1.63880322
CsimNodesTheta1to5$mv[["logProb_x"]][1:2]

[[1]]
[1] -11.732199 -29.088264 -28.278440 -18.162177 -12.306744 -2.782156
[7] -1.042151 -1.004362 -1.894675 -3.081102
##
[[2]]
[1] -66.932527 -1.104289 -12.517398 -13.876578 -3.212252 -2.782156
[7] -1.042151 -1.004362 -1.894675 -3.081102

Given the same initial values and the same random number generator seed, we got identical results
for theta[1:5] and their dependencies, but it happened much faster.

Chapter 3

More introduction

Now that we have shown a brief example, we will introduce more about the concepts and design of
NIMBLE.

One of the most important concepts behind NIMBLE is to allow a combination of high-level pro-
cessing in R and low-level processing in C++. For example, when we write a Metropolis-Hastings
MCMC sampler in the NIMBLE language, the inspection of the model structure related to one
node is done in R, and the actual sampler calculations are done in C++. This separation between
setup and run steps will become clearer as we go.

3.1 NIMBLE adopts and extends the BUGS language for specify-
ing models

We adopted the BUGS language, and we have extended it to make it more flexible. The BUGS
language became widely used in WinBUGS, then in OpenBUGS and JAGS. These systems all
provide automatically-generated MCMC algorithms, but we have adopted only the language for
describing models, not their systems for generating MCMCs.

NIMBLE extends BUGS by:

1. allowing you to write new functions and distributions and use them in BUGS models;
2. allowing you to define multiple models in the same code using conditionals evaluated when

the BUGS code is processed;
3. supporting a variety of more flexible syntax such as R-like named parameters and more general

algebraic expressions.

By supporting new functions and distributions, NIMBLE makes BUGS an extensible language,
which is a major departure from previous packages that implement BUGS.

We adopted BUGS because it has been so successful, with over 30,000 users by the time they
stopped counting (Lunn et al., 2009). Many papers and books provide BUGS code as a way to
document their statistical models. We describe NIMBLE’s version of BUGS later. The web sites
for WinBUGS, OpenBUGS and JAGS provide other useful documntation on writing models in
BUGS. For the most part, if you have BUGS code, you can try NIMBLE.

NIMBLE does several things with BUGS code:

27

28 CHAPTER 3. MORE INTRODUCTION

1. NIMBLE creates a model definition object that knows everything about the variables and
their relationships written in the BUGS code. Usually you’ll ignore the model definition and
let NIMBLE’s default options take you directly to the next step.

2. NIMBLE creates a model object1. This can be used to manipulate variables and operate
the model from R. Operating the model includes calculating, simulating, or querying the log
probability value of model nodes. These basic capabilities, along with the tools to query
model structure, allow one to write programs that use the model and adapt to its structure.

3. When you’re ready, NIMBLE can generate customized C++ code representing the model,
compile the C++, load it back into R, and provide a new model object that uses the compiled
model internally. We use the word ‘compile’ to refer to all of these steps together.

As an example of how radical a departure NIMBLE is from previous BUGS implementations,
consider a situation where you want to simulate new data from a model written in BUGS code.
Since NIMBLE creates model objects that you can control from R, simulating new data is trivial.
With previous BUGS-based packages, this isn’t possible.

More information about specifying and manipulating models is in Chapters 6 and 13.

3.2 nimbleFunctions for writing algorithms
NIMBLE provides nimbleFunctions for writing functions that can (but don’t have to) use BUGS
models. The main ways that nimbleFunctions can use BUGS models are:

1. inspecting the structure of a model, such as determining the dependencies between variables,
in order to do the right calculations with each model;

2. accessing values of the model’s variables;
3. controlling execution of the model’s probability calculations or corresponding simulations;
4. managing modelValues data structures for multiple sets of model values and probabilities.

In fact, the calculations of the model are themselves constructed as nimbleFunctions, as are the
algorithms provided in NIMBLE’s algorithm library2.

Programming with nimbleFunctions involves a fundamental distinction between two stages of pro-
cessing:

1. A setup function within a nimbleFunction gives the steps that need to happen only once for
each new situation (e.g., for each new model). Typically such steps include inspecting the
model’s variables and their relationships, such as determining which parts of a model will
need to be calculated for a MCMC sampler. Setup functions are executed in R and never
compiled.

2. One or more run functions within a nimbleFunction give steps that need to happen multiple
times using the results of the setup function, such as the iterations of a MCMC sampler.
Formally, run code is written in the NIMBLE language, which you can think of as a small
subset of R along with features for operating models and related data structures. The NIM-
BLE language is what the NIMBLE compiler can automatically turn into C++ as part of a
compiled nimbleFunction.

What NIMBLE does with a nimbleFunction is similar to what it does with a BUGS model:
1or multiple model objects
2That’s why it’s easy to use new functions and distributions written as nimbleFunctions in BUGS code.

3.3. THE NIMBLE ALGORITHM LIBRARY 29

1. NIMBLE creates a working R version of the nimbleFunction. This is most useful for debugging
(Section 15.7).

2. When you are ready, NIMBLE can generate C++ code, compile it, load it back into R and
give you new objects that use the compiled C++ internally. Again, we refer to these steps all
together as ‘compilation’. The behavior of compiled nimbleFunctions is usually very similar,
but not identical, to their uncompiled counterparts.

If you are familiar with object-oriented programming, you can think of a nimbleFunction as a class
definition. The setup function initializes a new object and run functions are class methods. Member
data are determined automatically as the objects from a setup function needed in run functions. If
no setup function is provided, the nimbleFunction corresponds to a simple (compilable) function
rather than a class.

More about writing algorithms is in Chapter 15.

3.3 The NIMBLE algorithm library
In Version 1.2.1, the NIMBLE algorithm library includes:

1. MCMC with samplers including conjugate (Gibbs), slice, adaptive random walk (with options
for reflection or sampling on a log scale), adaptive block random walk, and elliptical slice,
among others. You can modify sampler choices and configurations from R before compiling
the MCMC. You can also write new samplers as nimbleFunctions.

2. Reversible jump MCMC for variable selection.

3. WAIC calculation for model comparison after an MCMC algorithm has been run.

4. A set of particle filter (sequential Monte Carlo) methods including a basic bootstrap filter,
auxiliary particle filter, ensemble Kalman Filter, iterated filtering 2 filter (IF2), and Liu-West
filter.

5. An ascent-based Monte Carlo Expectation Maximization (MCEM) algorithm.

6. A variety of basic functions that can be used as programming tools for larger algorithms.
These include:

a. A likelihood function for arbitrary parts of any model.
b. Functions to simulate one or many sets of values for arbitrary parts of any model.
c. Functions to calculate the summed log probability (density) for one or many sets of

values for arbitrary parts of any model along with stochastic dependencies in the model
structure.

More about the NIMBLE algorithm library is in Chapter 8.

30 CHAPTER 3. MORE INTRODUCTION

Chapter 4

Installing NIMBLE

4.1 Requirements to run NIMBLE
You can run NIMBLE on any of the three common operating systems: Linux, MacOS, or Windows.

The following are required to run NIMBLE.

1. R, of course.
2. The igraph, coda, R6, pracma, and numDeriv R packages.
3. A working C++ compiler that NIMBLE can use from R on your system. There are standard

open-source C++ compilers that the R community has already made easy to install. See
Section 4.2 for instructions. You don’t need to know anything about C++ to use NIMBLE.
This must be done before installing NIMBLE.

NIMBLE also uses a couple of C++ libraries that you don’t need to install, as they will already be
on your system or are provided by NIMBLE.

1. The Eigen C++ library for linear algebra. This comes with NIMBLE, or you can use your
own copy.

2. The BLAS and LAPACK numerical libraries. These come with R, but see Section 4.5.3 for
how to use a faster version of the BLAS.

Most fairly recent versions of these requirements should work.

4.2 Installing a C++ compiler for NIMBLE to use
NIMBLE needs a C++ compiler and the standard utility make in order to generate and compile
C++ for models and algorithms.1

4.2.1 MacOS
On MacOS, you should install the Xcode command line tools. Installing just the command line
tools, which are available as a smaller installation than the full XCode development environment,

1This differs from most packages, which might need a C++ compiler only when the package is built. If you
normally install R packages using install.packages on Windows or MacOS, the package arrives already built to
your system.

31

https://www.cran.r-project.org
https://www.cran.r-project.org/web/packages/igraph/index.html
https://www.cran.r-project.org/web/packages/coda/index.html
https://www.cran.r-project.org/web/packages/R6/index.html
https://www.cran.r-project.org/web/packages/pracma/index.html
https://www.cran.r-project.org/web/packages/numDeriv/index.html
https://eigen.tuxfamily.org
https://mac.install.guide/commandlinetools/4.html
https://mac.install.guide/commandlinetools/4.html

32 CHAPTER 4. INSTALLING NIMBLE

should be sufficient. Alternatively, XCode is freely available from the Apple developer site and the
App Store.

In the somewhat unlikely event you want to install from the source package rather than the CRAN
binary package, the easiest approach is to use the source package provided at R-nimble.org. If you
do want to install from the source package provided by CRAN, you’ll need to install the GNU
Fortran compiler package following these instructions from CRAN.

4.2.2 Linux
On Linux, you can install the GNU compiler suite (gcc/g++). You can use the package manager
to install pre-built binaries. On Ubuntu, the following command will install or update make, gcc
and libc.
sudo apt-get install build-essential

Older versions of gcc (less than version 6.3.0) may not work with NIMBLE versions 0.13.2 and
newer.

4.2.3 Windows
On Windows, you should download and install Rtools.exe available from https://cran.r-project.
org/bin/windows/Rtools/. Select the appropriate executable corresponding to your version of R
(and follow the urge to update your version of R if you notice it is not the most recent).

Important: You must set the path so that the installer will add the location of the C++ compiler
and related tools to your system’s PATH variable, ensuring that R can find them. For R version 4.0
or greater (Rtools42 or Rtools40) be sure to follow the instructions in the section Putting Rtools
on the PATH. For R version 3.6.3 or lesser (i.e., using Rtools35.exe) make sure to check the box
labelled “Add rtools to system PATH” (page 5 of the installation pages) (it should be checked by
default). After you click ‘Next’, you will get a page with a window for customizing the new PATH
variable. You shouldn’t need to do anything there, so you can simply click ‘Next’ again.

4.3 Installing the NIMBLE package
Since NIMBLE is an R package, you can install it in the usual way, via install.packages("nimble")
in R or using the R CMD INSTALL method if you download the package source directly.

NIMBLE can also be obtained from the NIMBLE website. To install from our website, please see
our Download page for the specific invocation of install.packages.

4.4 Troubleshooting installation problems
We have tested the installation on the three commonly used platforms – MacOS, Linux, Windows2.
We don’t anticipate problems with installation, but we want to hear about any and help resolve
them.

The following are some troubleshooting tips that have helped users in some situations.

For Windows:
2We’ve tested NIMBLE on Windows 7, 8 and 10.

https://developer.apple.com/xcode
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
https://R-nimble.org
https://mac.r-project.org/tools
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools#putting-rtools-on-the-path
https://cran.r-project.org/bin/windows/Rtools#putting-rtools-on-the-path
https://r-nimble.org
https://r-nimble.org/download

4.5. CUSTOMIZING YOUR INSTALLATION 33

• Be sure you have set PATH when installing Rtools (see instructions above in the Windows
installation section). Alternatively, one can set the PATH manually using syntax similar to
this (after changing C:\\Rtools\\bin;C:\\Rtools\\mingw_64\\bin to be appropriate for
your system):
path <- Sys.getenv('PATH')
newPath <- paste("C:\\Rtools\\bin;C:\\Rtools\\mingw_64\\bin;",

path, sep = "")
Sys.setenv(PATH = newPath)

• Be sure the Rtools.exe version matches the R version.

• Try re-installing Rtools followed by re-installing NIMBLE.

• If you’re using Rtools42 or Rtools40, make sure you are using a newer version of RStudio
(at least 1.2.5042).

• If there are filesystem or permissions issues, it is possible to install NIMBLE in a local directory
using the lib argument to install.packages.

• In the past we’ve heard reports from Windows users of problems when their filesystem involved
a space in a directory name in the path to RHOME. We think this problem has been resolved.

• We’ve also heard reports from Windows users of problems when R is installed on a network
drive. A work-around is to install locally in a directory on a drive physically on the machine.

For MacOS:

• Newly installed Xcode/command line tools may need to be started once manually to provide
a one-time permission before they will work from NIMBLE.

• Upgrading your MacOS version may result in an error while installing or using NIMBLE.
Please try running the following in the Terminal to reinstall Xcode/command line tools:
xcode-select --install

• If multiple C++ compilers are present on a system, be sure the PATH will find the right one.

All operating systems:

• If problems arise from generating and compiling C++ files from the default location in R’s
tempdir(), one can use the dirName argument to compileNimble to put such files elsewhere,
such as in a local working directory.

If those suggestions don’t help, please post about installation problems to the nimble-users Google
group or email nimble.stats@gmail.com.

4.5 Customizing your installation

For most installations, you can ignore low-level details. However, there are some options that some
users may want to utilize.

https://groups.google.com/forum/#!forum/nimble-users
https://groups.google.com/forum/#!forum/nimble-users
mailto:nimble.stats@gmail.com

34 CHAPTER 4. INSTALLING NIMBLE

4.5.1 Using your own copy of Eigen

NIMBLE uses the Eigen C++ template library for linear algebra. Version 3.4.0 of Eigen is included
in the NIMBLE package and that version will be used unless the package’s configuration script finds
another version on the machine. This works well, and the following is only relevant if you want to
use a different (e.g., newer) version.

The configuration script looks in the standard include directories, e.g. /usr/include and
/usr/local/include for the header file Eigen/Dense. You can specify a particular location in
either of two ways:

1. Set the environment variable EIGEN_DIR before installing the R package, for example: export
EIGEN_DIR=/usr/include/eigen3 in the bash shell.

2. Use
R CMD INSTALL --configure-args='--with-eigen=/path/to/eigen' nimble_VERSION.tar.gz

or
install.packages("nimble", configure.args = "--with-eigen=/path/to/eigen")

In these cases, the directory should be the full path to the directory that contains the Eigen
directory, e.g., /usr/include/eigen3. It is not the full path to the Eigen directory itself, i.e.,
NOT /usr/include/eigen3/Eigen.

4.5.2 Using libnimble

NIMBLE generates specialized C++ code for user-specified models and nimbleFunctions. This
code uses some NIMBLE C++ library classes and functions. By default, on Linux the library code
is compiled once as a linkable library - libnimble.so. This single instance of the library is then
linked with the code for each generated model. In contrast, the default for Windows and MacOS is
to compile the library code as a static library - libnimble.a - that is compiled into each model’s and
each algorithm’s own dynamically loadable library (DLL). This does repeat the same code across
models and so occupies more memory. There may be a marginal speed advantage. If one would
like to enable the linkable library in place of the static library (do this only on MacOS and other
UNIX variants and not on Windows), one can install the source package with the configuration
argument --enable-dylib set to true. First obtain the NIMBLE source package (which will have
the extension .tar.gz from our website and then install as follows, replacing VERSION with the
appropriate version number:
R CMD INSTALL --configure-args='--enable-dylib=true' nimble_VERSION.tar.gz

4.5.3 BLAS and LAPACK

NIMBLE also uses BLAS and LAPACK for some of its linear algebra (in particular calculating
density values and generating random samples from multivariate distributions). NIMBLE will use
the same BLAS and LAPACK installed on your system that R uses. Note that a fast (and where
appropriate, threaded) BLAS can greatly increase the speed of linear algebra calculations. See
Section A.3.1 of the R Installation and Administration manual available on CRAN for more details
on providing a fast BLAS for your R installation.

https://r-nimble.org/download
https://cran.r-project.org/doc/manuals/r-release/R-admin.html

4.5. CUSTOMIZING YOUR INSTALLATION 35

4.5.4 Customizing compilation of the NIMBLE-generated C++
For each model or nimbleFunction, NIMBLE can generate and compile C++. To compile generated
C++, NIMBLE makes system calls starting with R CMD SHLIB and therefore uses the regular R
configuration in ${R_HOME}/etc/${R_ARCH}/Makeconf. NIMBLE places a Makevars file in the
directory in which the code is generated, and R CMD SHLIB uses this file as usual.

In all but specialized cases, the general compilation mechanism will suffice. However, one can
customize this. One can specify the location of an alternative Makevars (or Makevars.win) file
to use. Such an alternative file should define the variables PKG_CPPFLAGS and PKG_LIBS. These
should contain, respectively, the pre-processor flag to locate the NIMBLE include directory, and
the necessary libraries to link against (and their location as necessary), e.g., Rlapack and Rblas on
Windows, and libnimble. Advanced users can also change their default compilers by editing the
Makevars file, see Section 1.2.1 of the Writing R Extensions manual available on CRAN.

Use of this file allows users to specify additional compilation and linking flags. See the Writing R
Extensions manual for more details of how this can be used and what it can contain.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html

36 CHAPTER 4. INSTALLING NIMBLE

Part II

Models in NIMBLE

37

Chapter 5

Writing models in NIMBLE’s dialect
of BUGS

Models in NIMBLE are written using a variation on the BUGS language. From BUGS code,
NIMBLE creates a model object. This chapter describes NIMBLE’s version of BUGS. The next
chapter explains how to build and manipulate model objects.

5.1 Comparison to BUGS dialects supported by WinBUGS,
OpenBUGS and JAGS

Many users will come to NIMBLE with some familiarity with WinBUGS, OpenBUGS, or JAGS, so
we start by summarizing how NIMBLE is similar to and different from those before documenting
NIMBLE’s version of BUGS more completely. In general, NIMBLE aims to be compatible with the
original BUGS language and also JAGS’ version. However, at this point, there are some features
not supported by NIMBLE, and there are some extensions that are planned but not implemented.

5.1.1 Supported features of BUGS and JAGS
1. Stochastic and deterministic1 node declarations.
2. Most univariate and multivariate distributions.
3. Link functions.
4. Most mathematical functions.
5. ‘for’ loops for iterative declarations.
6. Arrays of nodes up to 4 dimensions.
7. Truncation and censoring as in JAGS using the T() notation and dinterval.

5.1.2 NIMBLE’s Extensions to BUGS and JAGS
NIMBLE extends the BUGS language in the following ways:

1. User-defined functions and distributions – written as nimbleFunctions – can be used in model
code. See Chapter 12.

1NIMBLE calls non-stochastic nodes ‘deterministic’, whereas BUGS calls them ‘logical’. NIMBLE uses ‘logical’ in
the way R does, to refer to boolean (TRUE/FALSE) variables.

39

40 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

2. Multiple parameterizations for distributions, similar to those in R, can be used.
3. Named parameters for distributions and functions, similar to R function calls, can be used.
4. Linear algebra, including for vectorized calculations of simple algebra, can be used in deter-

ministic declarations.
5. Distribution parameters can be expressions, as in JAGS but not in WinBUGS. Caveat: pa-

rameters to multivariate distributions (e.g., dmnorm) cannot be expressions (but an expression
can be defined in a separate deterministic expression and the resulting variable then used).

6. Alternative models can be defined from the same model code by using if-then-else statements
that are evaluated when the model is defined.

7. More flexible indexing of vector nodes within larger variables is allowed. For example one can
place a multivariate normal vector arbitrarily within a higher-dimensional object, not just in
the last index.

8. More general constraints can be declared using dconstraint, which extends the concept of
JAGS’ dinterval.

9. Link functions can be used in stochastic, as well as deterministic, declarations.2
10. Data values can be reset, and which parts of a model are flagged as data can be changed,

allowing one model to be used for different data sets without rebuilding the model each time.
11. One can use stochastic/dynamic indexes, i.e., indexes can be other nodes or functions of other

nodes. For a given dimension of a node being indexed, if the index is not constant, it must be
a scalar value. So expressions such as mu[k[i], 3] or mu[k[i], 1:3] or mu[k[i], j[i]]
are allowed, but not mu[k[i]:(k[i]+1)]3 Nested dynamic indexes such as mu[k[j[i]]] are
also allowed.

5.1.3 Not-supported features of BUGS and JAGS

The following are not supported.

1. The appearance of the same node on the left-hand side of both a <- and a ∼ declaration
(used in WinBUGS for data assignment for the value of a stochastic node).

2. Multivariate nodes must appear with brackets, even if they are empty. E.g., x cannot be
multivariate but x[] or x[2:5] can be.

3. NIMBLE generally determines the dimensionality and sizes of variables from the BUGS code.
However, when a variable appears with blank indices, such as in x.sum <- sum(x[]), and
if the dimensions of the variable are not clearly defined in other declarations, NIMBLE cur-
rently requires that the dimensions of x be provided when the model object is created (via
nimbleModel).

4. Use of non-sequential indexes in the definition of a for loop. JAGS allows syntax such as
for(i in expr) when expr evaluates to an integer vector. In NIMBLE one can use the
work-around of defining a constant vector, say k, and using k[i] in the body of the for loop.

5. Use of non-sequential indexes to subset variables. JAGS allows syntax such as sum(mu[expr])
when expr evaluates to an integer vector. In NIMBLE one can use the work-around of defining
a nimbleFunction that takes mu and the index vector as arguments and does the calculation
of interest.

2But beware of the possibility of needing to set values for ‘lifted’ nodes created by NIMBLE.
3In some cases, one can write a nimbleFunction to achieve the desired result, such as replacing

sum(mu[start[i]:end[i]]) with a nimbleFunction that takes mu, start[i], and end[i] as arguments and does
the needed summation.

5.2. WRITING MODELS 41

5.2 Writing models
Here we introduce NIMBLE’s version of BUGS. The WinBUGS, OpenBUGS and JAGS manuals
are also useful resources for writing BUGS models, including many examples.

5.2.1 Declaring stochastic and deterministic nodes
BUGS is a declarative language for graphical (or hierarchical) models. Most programming languages
are imperative, which means a series of commands will be executed in the order they are written. A
declarative language like BUGS is more like building a machine before using it. Each line declares
that a component should be plugged into the machine, but it doesn’t matter in what order they
are declared as long as all the right components are plugged in by the end of the code.

The machine in this case is a graphical model4. A node (sometimes called a vertex) holds one value,
which may be a scalar or a vector. Edges define the relationships between nodes. A huge variety
of statistical models can be thought of as graphs.

Here is the code to define and create a simple linear regression model with four observations.
library(nimble)
mc <- nimbleCode({

intercept ~ dnorm(0, sd = 1000)
slope ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 100)
for(i in 1:4) {

predicted.y[i] <- intercept + slope * x[i]
y[i] ~ dnorm(predicted.y[i], sd = sigma)

}
})

model <- nimbleModel(mc, data = list(y = rnorm(4)))

library(igraph)

layout <- matrix(ncol = 2, byrow = TRUE,
These seem to be rescaled to fit in the plot area,
so I'll just use 0-100 as the scale

data = c(33, 100,
66, 100,
50, 0, # first three are parameters
15, 50, 35, 50, 55, 50, 75, 50, # x's
20, 75, 40, 75, 60, 75, 80, 75, # predicted.y's
25, 25, 45, 25, 65, 25, 85, 25) # y's

)

sizes <- c(45, 30, 30,
rep(20, 4),
rep(50, 4),

4Technically, a directed acyclic graph

42 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

rep(20, 4))

edge.color <- "black"
c(
rep("green", 8),
rep("red", 4),
rep("blue", 4),
rep("purple", 4))

stoch.color <- "deepskyblue2"
det.color <- "orchid3"
rhs.color <- "gray73"
fill.color <- c(

rep(stoch.color, 3),
rep(rhs.color, 4),
rep(det.color, 4),
rep(stoch.color, 4)

)

plot(model$graph, vertex.shape = "crectangle",
vertex.size = sizes,
vertex.size2 = 20,
layout = layout,
vertex.label.cex = 3.0,
vertex.color = fill.color,
edge.width = 3,
asp = 0.5,
edge.color = edge.color)

The graph representing the model is shown in Figure 5.1. Each observation, y[i], is a node whose
edges say that it follows a normal distribution depending on a predicted value, predicted.y[i],
and standard deviation, sigma, which are each nodes. Each predicted value is a node whose edges
say how it is calculated from slope, intercept, and one value of an explanatory variable, x[i],
which are each nodes.

This graph is created from the following BUGS code:
{

intercept ~ dnorm(0, sd = 1000)
slope ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 100)
for(i in 1:4) {

predicted.y[i] <- intercept + slope * x[i]
y[i] ~ dnorm(predicted.y[i], sd = sigma)

}
}

In this code, stochastic relationships are declared with ‘∼’ and deterministic relationships are de-
clared with ‘<-’. For example, each y[i] follows a normal distribution with mean predicted.y[i]

5.2. WRITING MODELS 43

intercept slope

sigma

x[1] x[2] x[3] x[4]

predicted.y[1] predicted.y[2] predicted.y[3] predicted.y[4]

y[1] y[2] y[3] y[4]

Figure 5.1: Graph of a linear regression model

and standard deviation sigma. Each predicted.y[i] is the result of intercept + slope * x[i].
The for-loop yields the equivalent of writing four lines of code, each with a different value of i.
It does not matter in what order the nodes are declared. Imagine that each line of code draws
part of Figure 5.1, and all that matters is that the everything gets drawn in the end. Available
distributions, default and alternative parameterizations, and functions are listed in Section 5.2.4.

An equivalent graph can be created by this BUGS code:
{

intercept ~ dnorm(0, sd = 1000)
slope ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 100)
for(i in 1:4) {

y[i] ~ dnorm(intercept + slope * x[i], sd = sigma)
}

}

In this case, the predicted.y[i] nodes in Figure 5.1 will be created automatically by NIMBLE
and will have a different name, generated by NIMBLE.

5.2.2 More kinds of BUGS declarations
Here are some examples of valid lines of BUGS code. This code does not describe a sensible or
complete model, and it includes some arbitrary indices (e.g. mvx[8:10, i]) to illustrate flexibility.
Instead the purpose of each line is to illustrate a feature of NIMBLE’s version of BUGS.
{

1. normal distribution with BUGS parameter order
x ~ dnorm(a + b * c, tau)

44 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

2. normal distribution with a named parameter
y ~ dnorm(a + b * c, sd = sigma)
3. For-loop and nested indexing
for(i in 1:N) {

for(j in 1:M[i]) {
z[i,j] ~ dexp(r[blockID[i]])

}
}
4. multivariate distribution with arbitrary indexing
for(i in 1:3)

mvx[8:10, i] ~ dmnorm(mvMean[3:5], cov = mvCov[1:3, 1:3, i])
5. User-provided distribution
w ~ dMyDistribution(hello = x, world = y)
6. Simple deterministic node
d1 <- a + b
7. Vector deterministic node with matrix multiplication
d2[] <- A[,] %*% mvMean[1:5]
8. Deterministic node with user-provided function
d3 <- foo(x, hooray = y)

}

When a variable appears only on the right-hand side, it can be provided via constants (in which
case it can never be changed) or via data or inits, as discussed in Chapter 6.

Notes on the comment-numbered lines are:

1. x follows a normal distribution with mean a + b*c and precision tau (default BUGS second
parameter for dnorm).

2. y follows a normal distribution with the same mean as x but a named standard deviation
parameter instead of a precision parameter (sd = 1/sqrt(precision)).

3. z[i, j] follows an exponential distribution with parameter r[blockID[i]]. This shows
how for-loops can be used for indexing of variables containing multiple nodes. Variables that
define for-loop indices (N and M) must also be provided as constants.

4. The arbitrary block mvx[8:10, i] follows a multivariate normal distribution, with a named
covariance matrix instead of BUGS’ default of a precision matrix. As in R, curly braces for
for-loop contents are only needed if there is more than one line.

5. w follows a user-defined distribution. See Chapter 12.
6. d1 is a scalar deterministic node that, when calculated, will be set to a + b.
7. d2 is a vector deterministic node using matrix multiplication in R’s syntax.
8. d3 is a deterministic node using a user-provided function. See Chapter 12.

5.2.2.1 More about indexing

Examples of allowed indexing include:

• x[i] # a single index
• x[i:j] # a range of indices
• x[i:j,k:l] # multiple single indices or ranges for higher-dimensional arrays

5.2. WRITING MODELS 45

• x[i:j,] # blank indices indicating the full range
• x[3*i+7] # computed indices
• x[(3*i):(5*i+1)] # computed lower and upper ends of an index range
• x[k[i]+1] # a dynamic (and computed) index
• x[k[j[i]]] # nested dynamic indexes
• x[k[i], 1:3] # nested indexing of rows or columns

NIMBLE does not allow multivariate nodes to be used without square brackets, which is an incom-
patibility with JAGS. Therefore a statement like xbar <- mean(x) in JAGS must be converted to
xbar <- mean(x[]) (if x is a vector) or xbar <- mean(x[,]) (if x is a matrix) for NIMBLE5.
Section 6.1.1.5 discusses how to provide NIMBLE with dimensions of x when needed.

One cannot provide a vector of indices that are not constant. For example, x[start[i]:end[i]]
is allowed only if start and end are provided as constants. Also, one cannot provide a vector, or
expression evaluating to a vector (apart from use of :) as an index. For example, x[inds] is not
allowed. Often one can write a nimbleFunction to achieve the desired result, such as definining a
nimbleFunction that takes x, start[i], and end[i] or takes x and inds as arguments and does the
subsetting (possibly in combination with some other calculation). Note that x[L:U] and x[inds]
are allowed in nimbleFunction code.

Generally NIMBLE supports R-like linear algebra expressions and attempts to follow the same
rules as R about dimensions (although in some cases this is not possible). For example, x[1:3]
%*% y[1:3] converts x[1:3] into a row vector and thus computes the inner product, which is
returned as a 1 × 1 matrix (use inprod to get it as a scalar, which it typically easier). Like in R, a
scalar index will result in dropping a dimension unless the argument drop=FALSE is provided. For
example, mymatrix[i, 1:3] will be a vector of length 3, but mymatrix[i, 1:3, drop=FALSE]
will be a 1 × 3 matrix. More about indexing and dimensions is discussed in Section 11.3.2.7.

5.2.3 Vectorized versus scalar declarations

Suppose you need nodes logY[i] that should be the log of the corresponding Y[i], say for i from
1 to 10. Conventionally this would be created with a for loop:
{

for(i in 1:10) {
logY[i] <- log(Y[i])

}
}

Since NIMBLE supports R-like algebraic expressions, an alternative in NIMBLE’s dialect of BUGS
is to use a vectorized declaration like this:
{

logY[1:10] <- log(Y[1:10])
}

There is an important difference between the models that are created by the above two methods.
The first creates 10 scalar nodes, logY[1] , … , logY[10]. The second creates one vector node,

5In nimbleFunctions, as explained in later chapters, square brackets with blank indices are not necessary for
multivariate objects.

46 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

logY[1:10]. If each logY[i] is used separately by an algorithm, it may be more efficient compu-
tationally if they are declared as scalars. If they are all used together, it will often make sense to
declare them as a vector.

5.2.4 Available distributions
5.2.4.1 Distributions

NIMBLE supports most of the distributions allowed in BUGS and JAGS. Table 5.1 lists the distri-
butions that are currently supported, with their default parameterizations, which match those of
BUGS6. NIMBLE also allows one to use alternative parameterizations for a variety of distributions
as described next. See Section 12.2 to learn how to write new distributions using nimbleFunctions.

Table 5.1: Distributions with their default order of parame-
ters. The value of the random variable is given by 𝑥.

Name Usage Density Lower Upper
Bernoulli dbern(prob = p) 𝑝𝑥(1 − 𝑝)1−𝑥 0 1

0 < 𝑝 < 1
Beta dbeta(shape1 = a, 𝑥𝑎−1(1−𝑥)𝑏−1

𝛽(𝑎,𝑏) 0 1
shape2 = b), 𝑎 > 0, 𝑏 > 0

Binomial dbin(prob = p, size = n) (𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 0 𝑛

0 < 𝑝 < 1, 𝑛 ∈ ℕ∗

CAR dcar_normal(adj, weights, see chapter 9 for details
(intrinsic) num, tau, c, zero_mean)
CAR dcar_proper(mu, C, adj, see chapter 9 for details
(proper) num, M, tau, gamma)
Categorical dcat(prob = p) 𝑝𝑥

∑𝑖 𝑝𝑖
1 𝑁

𝑝 ∈ (ℝ+)𝑁

Chi-square dchisq(df = k), 𝑘 > 0 𝑥 𝑘
2 −1 exp(−𝑥/2)

2 𝑘
2 Γ(𝑘

2)
0

Double ddexp(location = 𝜇, 𝜏
2 exp(−𝜏|𝑥 − 𝜇|)

exponential rate = 𝜏),𝜏 > 0
Dirichlet ddirch(alpha = 𝛼) Γ(∑𝑗 𝛼𝑗) ∏𝑗

𝑥𝛼𝑗−1
𝑗

Γ(𝛼𝑗) 0
𝛼𝑗 ≥ 0

Exponential dexp(rate = 𝜆), 𝜆 > 0 𝜆 exp(−𝜆𝑥) 0
Flat dflat() ∝ 1 (improper)
Gamma dgamma(shape = r, rate = 𝜆) 𝜆𝑟𝑥𝑟−1 exp(−𝜆𝑥)

Γ(𝑟) 0
𝜆 > 0, 𝑟 > 0

Half flat dhalfflat() ∝ 1 (improper) 0
Inverse dinvgamma(shape = r, scale = 𝜆) 𝜆𝑟𝑥−(𝑟+1) exp(−𝜆/𝑥)

Γ(𝑟) 0
gamma 𝜆 > 0, 𝑟 > 0
LKJ Correl’n dlkj_corr_cholesky(eta = 𝜂, ∏𝑝

𝑖=2 𝑥𝑝−𝑖+2𝜂−2
𝑖𝑖

6Note that the same distributions are available for writing nimbleFunctions, but in that case the default param-
eterizations and function names match R’s when possible. Please see Section 11.2.4 for how to use distributions in
nimbleFunctions.

5.2. WRITING MODELS 47

Name Usage Density Lower Upper
Cholesky size = p), 𝜂 > 0
Logistic dlogis(location = 𝜇, 𝜏 exp{(𝑥−𝜇)𝜏}

[1+exp{(𝑥−𝜇)𝜏}]2

rate = 𝜏),𝜏 > 0
Log-normal dlnorm(meanlog = 𝜇, (𝜏

2𝜋)
1
2 𝑥−1 exp {−𝜏(log(𝑥) − 𝜇)2/2} 0

taulog = 𝜏), 𝜏 > 0
Multinomial dmulti(prob = p, size = n) 𝑛! ∏𝑗

𝑝𝑥𝑗
𝑗

𝑥𝑗!
∑𝑗 𝑥𝑗 = 𝑛

Multivariate dmnorm(mean = 𝜇, prec = Λ) (2𝜋)− 𝑑
2 |Λ| 1

2 exp{− (𝑥−𝜇)𝑇 Λ(𝑥−𝜇)
2 }

normal Λ positive definite
Multivariate dmvt(mu = 𝜇, prec = Λ, Γ(𝜈+𝑑

2)
Γ(𝜈

2)(𝜈𝜋)𝑑/2 |Λ|1/2(1 + (𝑥−𝜇)𝑇 Λ(𝑥−𝜇)
𝜈)− 𝜈+𝑑

2

Student t df = 𝜈), Λ positive def.
Negative dnegbin(prob = p, size = r) (𝑥+𝑟−1

𝑥)𝑝𝑟(1 − 𝑝)𝑥 0
binomial 0 < 𝑝 ≤ 1, 𝑟 ≥ 0
Normal dnorm(mean = 𝜇, tau = 𝜏) (𝜏

2𝜋)
1
2 exp{−𝜏(𝑥 − 𝜇)2/2}

𝜏 > 0
Poisson dpois(lambda = 𝜆) exp(−𝜆)𝜆𝑥

𝑥! 0
𝜆 > 0

Student t dt(mu = 𝜇, tau = 𝜏, df = k) Γ(𝑘+1
2)

Γ(𝑘
2) (𝜏

𝑘𝜋)
1
2 {1 + 𝜏(𝑥−𝜇)2

𝑘 }
− (𝑘+1)

2

𝜏 > 0, 𝑘 > 0
Uniform dunif(min = a, max = b) 1

𝑏−𝑎 𝑎 𝑏
𝑎 < 𝑏

Weibull dweib(shape = v, lambda = 𝜆) 𝑣𝜆𝑥𝑣−1 exp(−𝜆𝑥𝑣) 0
𝑣 > 0, 𝜆 > 0

Wishart dwish(R = R, df = k) |𝑥|(𝑘−𝑝−1)/2|𝑅|𝑘/2 exp{−tr(𝑅𝑥)/2}
2𝑝𝑘/2𝜋𝑝(𝑝−1)/4 ∏𝑝

𝑖=1 Γ((𝑘+1−𝑖)/2)
R 𝑝 × 𝑝 pos. def., 𝑘 ≥ 𝑝

Inverse dinvwish(S = S, df = k) |𝑥|−(𝑘+𝑝+1)/2|𝑆|𝑘/2 exp{−tr(𝑆𝑥−1)/2}
2𝑝𝑘/2𝜋𝑝(𝑝−1)/4 ∏𝑝

𝑖=1 Γ((𝑘+1−𝑖)/2)
Wishart S 𝑝 × 𝑝 pos. def., 𝑘 ≥ 𝑝

5.2.4.1.1 Improper distributions Note that dcar_normal, dflat and dhalfflat specify im-
proper prior distributions and should only be used when the posterior distribution of the model
is known to be proper. Also for these distributions, the density function returns the unnormal-
ized density and the simulation function returns NaN so these distributions are not appropriate for
algorithms that need to simulate from the prior or require proper (normalized) densities.

5.2.4.1.2 LKJ distribution for correlation matrices NIMBLE provides the LKJ distribu-
tion via dlkj_corr_cholesky for correlation matrices, discussed in Section 24 of Stan Development
Team (2021a) and based on Lewandowski et al. (2009). This distribution has various advantages
(both from a modeling perspective and an MCMC fitting perspective) over other prior distributions
for correlation or covariance matrices such as the inverse Wishart distribution.

For computational efficiency, the distribution is on the Cholesky factor of the correlation matrix

48 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

rather than the correlation matrix itself. As a result using this distribution in a model involves a
bit of care, including efficiently creating a covariance matrix from the correlation matrix and a set
of standard deviations.

Here is some example code illustrating how to use the distribution in a model.
code <- nimbleCode({

Ustar[1:p,1:p] ~ dlkj_corr_cholesky(1.3, p)
U[1:p,1:p] <- uppertri_mult_diag(Ustar[1:p, 1:p], sds[1:p])
for(i in 1:n)

y[i, 1:p] ~ dmnorm(mu[1:p], cholesky = U[1:p, 1:p], prec_param = 0)
})

Note that we need to take the upper triangular Cholesky factor (Ustar) of the correlation matrix
and convert it to the upper triangular Cholesky factor (U) of a covariance matrix, based on a vector
of standard deviations (sds), and use that in the parameterization of dmnorm that directly (and
therefore efficiently) uses the Cholesky of the covariance.

Other approaches are possible, but unless care is taken they are likely to be less computationally
efficient than the template above.

The template above uses a user-defined nimbleFunction to efficiently combine the Cholesky of the
correlation matrix with a vector of standard deviations to produce the Cholesky of the covariance
matrix. That function is given here:
uppertri_mult_diag <- nimbleFunction(

run = function(mat = double(2), vec = double(1)) {
returnType(double(2))
p <- length(vec)
out <- matrix(nrow = p, ncol = p, init = FALSE)
for(i in 1:p)

out[, i] <- mat[, i] * vec[i]
return(out)

})

Note that NIMBLE ignores the lower triangle of the Cholesky factor of the correlation matrix; the
values are taken to be zero. It also ignores the [1,1] element, which is taken to be one. Any initial
values for these elements will be ignored and simply repeated in the MCMC samples.

Assuming the [1,1] element is one and the lower triangle is filled with zeroes in the MCMC samples,
one can reconstruct a sample, here for the sth sample, of the correlation matrix as follows using
the matrix of MCMC samples:
cols <- grep("^Ustar",colnames(samples))
Ustar_sample <- matrix(samples[s, cols], p, p)
corrMatrix_sample <- crossprod(Ustar_sample) ## i.e., t(Ustar_sample) %*% Ustar_sample

5.2.4.2 Alternative parameterizations for distributions

NIMBLE allows one to specify distributions in model code using a variety of parameterizations,
including the BUGS parameterizations. Available parameterizations are listed in Table 5.2. To

5.2. WRITING MODELS 49

understand how NIMBLE handles alternative parameterizations, it is useful to distinguish three
cases, using the gamma distribution as an example:

1. A canonical parameterization is used directly for computations7. For gamma, this is (shape,
scale).

2. The BUGS parameterization is the one defined in the original BUGS language. In general this
is the parameterization for which conjugate MCMC samplers can be executed most efficiently.
For dgamma, this is (shape, rate).

3. An alternative parameterization is one that must be converted into the canonical parameter-
ization. For dgamma, NIMBLE provides both (shape, rate) and (mean, sd) parameterization
and creates nodes to calculate (shape, scale) from either (shape, rate) or (mean, sd). In the
case of dgamma, the BUGS parameterization is also an alternative parameterization.

Since NIMBLE provides compatibility with existing BUGS and JAGS code, the order of param-
eters places the BUGS parameterization first. For example, the order of parameters for dgamma
is dgamma(shape, rate, scale, mean, sd). Like R, if parameter names are not given, they are
taken in order, so that (shape, rate) is the default. This happens to match R’s order of parameters,
but it need not. If names are given, they can be given in any order. NIMBLE knows that rate is
an alternative to scale and that (mean, sd) are an alternative to (shape, scale or rate).

Table 5.2: Distribution parameterizations allowed in NIM-
BLE. The first column indicates the supported parameteriza-
tions for distributions given in Table 5.1. The second column
indicates the relationship to the canonical parameterization
used in NIMBLE.

Parameterization NIMBLE re-parameterization
dbern(prob) dbin(size = 1, prob)
dbeta(shape1, shape2) canonical
dbeta(mean, sd) dbeta(shape1 = mean^2 * (1-mean) / sd^2 - mean,

shape2 = mean * (1 - mean)^2 / sd^2 + mean - 1)
dbin(prob, size) canonical
dcat(prob) canonical
dchisq(df) canonical
ddexp(location, scale) canonical
ddexp(location, rate) ddexp(location, scale = 1 / rate)
ddexp(location, var) ddexp(location, scale = sqrt(var / 2))
ddirch(alpha) canonical
dexp(rate) canonical
dexp(scale) dexp(rate = 1/scale)
dgamma(shape, scale) canonical
dgamma(shape, rate) dgamma(shape, scale = 1 / rate)
dgamma(mean, sd) dgamma(shape = mean^2/sd^2, scale = sd^2/mean)
dinvgamma(shape, rate) canonical
dinvgamma(shape, scale) dgamma(shape, rate = 1 / scale)
dlkj_corr_cholesky(eta) canonical

7Usually this is the parameterization in the Rmath header of R’s C implementation of distributions.

50 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

Parameterization NIMBLE re-parameterization
dlogis(location, scale) canonical
dlogis(location, rate) dlogis(location, scale = 1 / rate)
dlnorm(meanlog, sdlog) canonical
dlnorm(meanlog, taulog) dlnorm(meanlog, sdlog = 1 / sqrt(taulog))
dlnorm(meanlog, varlog) dlnorm(meanlog, sdlog = sqrt(varlog))
dmulti(prob, size) canonical
dmnorm(mean, cholesky, canonical (precision)
...prec_param=1)
dmnorm(mean, cholesky, canonical (covariance)
...prec_param=0)
dmnorm(mean, prec) dmnorm(mean, cholesky = chol(prec), prec_param=1)
dmnorm(mean, cov) dmnorm(mean, cholesky = chol(cov), prec_param=0)
dmvt(mu, cholesky, df, canonical (precision/inverse scale)
...prec_param=1)
dmvt(mu, cholesky, df, canonical (scale)
...prec_param=0)
dmvt(mu, prec, df) dmvt(mu, cholesky = chol(prec), df, prec_param=1)
dmvt(mu, scale, df) dmvt(mu, cholesky = chol(scale), df, prec_param=0)
dlkj_corr_cholesky(canonical
...shape, size)
dnegbin(prob, size) canonical
dnorm(mean, sd) canonical
dnorm(mean, tau) dnorm(mean, sd = 1 / sqrt(var))
dnorm(mean, var) dnorm(mean, sd = sqrt(var))
dpois(lambda) canonical
dt(mu, sigma, df) canonical
dt(mu, tau, df) dt(mu, sigma = 1 / sqrt(tau), df)
dt(mu, sigma2, df) dt(mu, sigma = sqrt(sigma2), df)
dunif(min, max) canonical
dweib(shape, scale) canonical
dweib(shape, rate) dweib(shape, scale = 1 / rate)
dweib(shape, lambda) dweib(shape, scale = lambda^(- 1 / shape))
dwish(cholesky, df, canonical (scale)
...scale_param=1)
dwish(cholesky, df, canonical (inverse scale)
...scale_param=0)
dwish(R, df) dwish(cholesky = chol(R), df, scale_param = 0)
dwish(S, df) dwish(cholesky = chol(S), df, scale_param = 1)
dinvwish(cholesky, df, canonical (scale)
...scale_param=1)
dinvwish(cholesky, df, canonical (inverse scale)
...scale_param=0)
dinvwish(R, df) dinvwish(cholesky = chol(R), df, scale_param = 0)
dinvwish(S, df) dinvwish(cholesky = chol(S), df, scale_param = 1)

5.2. WRITING MODELS 51

Note that for multivariate normal, multivariate t, Wishart, and Inverse Wishart, the canonical
parameterization uses the Cholesky decomposition of one of the precision/inverse scale or covari-
ance/scale matrix. For example, for the multivariate normal, if prec_param=TRUE, the cholesky
argument is treated as the Cholesky decomposition of a precision matrix. Otherwise it is treated
as the Cholesky decomposition of a covariance matrix.

In addition, NIMBLE supports alternative distribution names, known as aliases, as in JAGS, as
specified in Table 5.3.

Table 5.3: Distributions with alternative names (aliases)

Distribution Canonical name Alias
Binomial dbin dbinom
Chi-square dchisq dchisqr
Double exponential ddexp dlaplace
Dirichlet ddirch ddirich
Multinomial dmulti dmultinom
Negative binomial dnegbin dnbinom
Weibull dweib dweibull
Wishart dwish dwishart

We plan to, but do not currently, include the following distributions as part of core NIMBLE: beta-
binomial, Dirichlet-multinomial, F, Pareto, or forms of the multivariate t other than the standard
one provided.

5.2.5 Available BUGS language functions
Tables 5.4-5.5 show the available operators and functions. Support for more general R expressions
is covered in Chapter 11 about programming with nimbleFunctions.

For the most part NIMBLE supports the functions used in BUGS and JAGS, with exceptions
indicated in the table. Additional functions provided by NIMBLE are also listed. Note that we
provide distribution functions for use in calculations, namely the ‘p’, ‘q’, and ‘d’ functions. See
Section 11.2.4 for details on the syntax for using distribution functions as functions in deterministic
calculations, as only some parameterizations are allowed and the names of some distributions differ
from those used to define stochastic nodes in a model.

Table 5.4: Functions operating on scalars, many of which
can operate on each element (component-wise) of vectors and
matrices. Status column indicates if the function is currently
provided in NIMBLE. Vector input column indicates if the
function can take a vector as an argument (i.e., if the function
is vectorized).

Usage Description Comments Status Vector input
x | y, x & y logical OR (|) and AND(&) yes yes
!x logical not yes yes

52 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

Usage Description Comments Status Vector input
x > y, x >= y greater than (and or equal to) yes yes
x < y, x <= y less than (and or equal to) yes yes
x != y, x == y (not) equals yes yes
x + y, x - y, x * y component-wise operators mix of scalar and vector yes yes
x / y component-wise division vector 𝑥 and scalar 𝑦 yes yes
x^y, pow(x, y) power 𝑥𝑦; vector 𝑥,scalar 𝑦 yes yes
x %% y modulo (remainder) yes no
min(x1, x2), min. (max.) of two scalars yes See pmin,
max(x1, x2) pmax
exp(x) exponential yes yes
log(x) natural logarithm yes yes
sqrt(x) square root yes yes
abs(x) absolute value yes yes
step(x) step function at 0 0 if 𝑥 < 0, 1 if 𝑥 >= 0 yes yes
equals(x, y) equality of two scalars 1 if 𝑥 == 𝑦, 0 if 𝑥! = 𝑦 yes yes
cube(x) third power 𝑥3 yes yes
sin(x), cos(x), trigonometric functions yes yes
tan(x)
asin(x), acos(x), inverse trigonometric functions yes yes
atan(x)
asinh(x), acosh(x), inv. hyperbolic trig. functions yes yes
atanh(x)
logit(x) logit log(𝑥/(1 − 𝑥)) yes yes
ilogit(x), expit(x) inverse logit exp(𝑥)/(1 + exp(𝑥)) yes yes
probit(x) probit (Gaussian quantile) Φ−1(𝑥) yes yes
iprobit(x), phi(x) inverse probit (Gaussian CDF) Φ(𝑥) yes yes
cloglog(x) complementary log log log(− log(1 − 𝑥)) yes yes
icloglog(x) inverse complementary log log 1 − exp(− exp(𝑥)) yes yes
ceiling(x) ceiling function ⌈(𝑥)⌉ yes yes
floor(x) floor function ⌊(𝑥)⌋ yes yes
round(x) round to integer yes yes
trunc(x) truncation to integer yes yes
lgamma(x), loggam(x) log gamma function log Γ(𝑥) yes yes
besselK(x, nu, modified bessel function returns vector even if yes yes
...expon.scaled) of the second kind 𝑥 a matrix/array
log1p(x) log of 1 + x log(1 + 𝑥) yes yes
lfactorial(x), log factorial log 𝑥! yes yes
logfact(x)
qDIST(x, PARAMS) “q” distribution functions canonical parameterization yes yes
pDIST(x, PARAMS) “p” distribution functions canonical parameterization yes yes
rDIST(x, PARAMS) “r” distribution functions canonical parameterization yes yes
dDIST(x, PARAMS) “d” distribution functions canonical parameterization yes yes
sort(x) no
rank(x, s) no
ranked(x, s) no

5.2. WRITING MODELS 53

order(x) no

Table 5.5: Functions operating on vectors and matrices. Sta-
tus column indicates if the function is currently provided in
NIMBLE.

Usage Description Comments Status
inverse(x) matrix inverse 𝑥 symmetric, positive def. yes
chol(x) matrix Cholesky factorization 𝑥 symmetric, positive def. yes

returns upper triang. matrix
t(x) matrix transpose 𝑥⊤ yes
x%*%y matrix multiply 𝑥𝑦; 𝑥, 𝑦 conformant yes
inprod(x, y) dot product 𝑥⊤𝑦; 𝑥 and 𝑦 vectors yes
solve(x,y) solve system of equations 𝑥−1𝑦; 𝑦 matrix or vector yes
forwardsolve(x, y) solve lower-triangular system of equations 𝑥−1𝑦; 𝑥 lower-triangular yes
backsolve(x, y) solve upper-triangular system of equations 𝑥−1𝑦; 𝑥 upper-triangular yes
logdet(x) log matrix determinant log |𝑥| yes
asRow(x) convert vector to 1-row matrix sometimes automatic yes
asCol(x) convert vector to 1-column matrix sometimes automatic yes
sum(x) sum of elements of x yes
mean(x) mean of elements of x yes
sd(x) standard deviation of elements of x yes
prod(x) product of elements of x yes
min(x), max(x) min. (max.) of elements of x yes
pmin(x, y), pmax(x,y) vector of mins (maxs) of elements of yes

x and y
interp.lin(x, v1, v2) linear interpolation no
eigen(x)$values matrix eigenvalues 𝑥 symmetric yes
eigen(x)$vectors matrix eigenvectors 𝑥 symmetric yes
svd(x)$d matrix singular values yes
svd(x)$u matrix left singular vectors yes
svd(x)$v matrix right singular vectors yes

See Section 12.1 to learn how to use nimbleFunctions to write new functions for use in BUGS code.

5.2.6 Available link functions
NIMBLE allows the link functions listed in Table 5.6.

Table 5.6: Link functions.

Link function Description Range Inverse
cloglog(y) <- x Complementary log log 0 < 𝑦 < 1 y <- icloglog(x)
log(y) <- x Log 0 < 𝑦 y <- exp(x)
logit(y) <- x Logit 0 < 𝑦 < 1 y <- expit(x)
probit(y) <- x Probit 0 < 𝑦 < 1 y <- iprobit(x)

54 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

Link function Description Range Inverse

Link functions are specified as functions applied to a node on the left hand side of a BUGS expression.
To handle link functions in deterministic declarations, NIMBLE converts the declaration into an
equivalent inverse declaration. For example, log(y) <- x is converted into y <- exp(x). In other
words, the link function is just a simple variant for conceptual clarity.

To handle link functions in a stochastic declaration, NIMBLE does some processing that inserts an
additional node into the model. For example, the declaration logit(p[i]) ~ dnorm(mu[i],1), is
equivalent to the following two declarations:

• logit_p[i] ~ dnorm(mu[i], 1),
• p[i] <- expit(logit_p[i])

where expit is the inverse of logit.

Note that NIMBLE does not provide an automatic way of initializing the additional node
(logit_p[i] in this case), which is a parent node of the explicit node (p[i]), without explicitly
referring to the additional node by the name that NIMBLE generates.

5.2.7 Truncation, censoring, and constraints
NIMBLE provides three ways to declare boundaries on the value of a variable, each for different
situations. We introduce these and comment on their relationships to related features of JAGS and
BUGS. The three methods are:

5.2.7.1 Truncation

Either of the following forms,

x ~ dnorm(0, sd = 10) T(0, a)
x ~ T(dnorm(0, sd = 10), 0, a)

declares that x follows a normal distribution between 0 and a (inclusive of 0 and a). Either boundary
may be omitted or may be another node, such as a in this example. The first form is compatible
with JAGS, but in NIMBLE it can only be used when reading code from a text file. When writing
model code in R, the second version must be used.

Truncation means the possible values of x are limited a priori, hence the probability density of x
must be normalized8. In this example it would be the normal probability density divided by its
integral from 0 to a. Like JAGS, NIMBLE also provides I as a synonym for T to accommodate
older BUGS code, but T is preferred because it disambiguates multiple usages of I in BUGS.

5.2.7.2 Censoring

Censoring refers to the situation where one datum gives the lower or upper bound on an unobserved
random variable. This is common in survival analysis, when for an individual still surviving at the
end of a study, the age of death is not known and hence is ‘censored’ (right-censoring). NIMBLE
adopts JAGS syntax for censoring, as follows:

8NIMBLE uses the CDF and inverse CDF (quantile) functions of a distribution to do this; in some cases if one
uses truncation to include only the extreme tail of a distribution, numerical difficulties can arise.

5.2. WRITING MODELS 55

censored[i] ~ dinterval(t[i], c[i])
t[i] ~ dweib(r, mu[i])

In the case of right-censoring, censored[i] should be given as data with a value of 1 if t[i]
is right-censored (t[i] > c[i]) and 0 if it is observed. The data vector for t should have NA
(indicating missing data) for any censored t[i] entries. (As a result, these nodes will be sampled
in an MCMC.) The vector for c should give the censoring times corresponding to censored entries
and a value above the observed times for uncensored entries (e.g., Inf). The values for c can be
provided via constants, inits, or data. We recommend providing via constants for values that
are fixed and via inits for values that are to be estimated or might be changed for some reason.

Left-censored observations would be specified by setting censored[i] to 0 and t[i] to NA.

Important: The value of t[i] corresponding to each censored data point should be given a valid
initial value (via inits) that is consistent with censored[i]. Otherwise, NIMBLE will initialize
from the prior, which may not produce a valid initial value.

The dinterval is not really a distribution but rather a trick: in the above example when
censored[i] = 1 it gives a ‘probability’ of 1 if t[i] > c[i] and 0 otherwise. This means
that t[i] <= c[i] is treated as impossible. More generally than simple right- or left-censoring,
censored[i] ~ dinterval(t[i], c[i,]) is defined such that for a vector of increasing cut-
points, c[i,], t[i] is enforced to fall within the censored[i]-th cutpoint interval. This is done
by setting data censored[i] as follows:

censored[i] = 0 if t[i] <= c[i, 1]

censored[i] = m if c[i, m] < t[i] <= c[i, m+1] for 1 ≤ 𝑚 ≤ 𝑀
censored[i] = M if c[i, M] < t[i]

(The i index is provided only for consistency with the previous example.) The most common uses
of dinterval will be for left- and right-censored data, in which case c[i,] will be a single value
(and typically given as simply c[i]), and for interval-censored data, in which case c[i,] will be a
vector of two values.

Nodes following a dinterval distribution should normally be set as data with known values. Oth-
erwise, the node may be simulated during initialization in some algorithms (e.g., MCMC) and
thereby establish a permanent, perhaps unintended, constraint.

Censoring differs from truncation because censoring an observation involves bounds on a random
variable that could have taken any value, while in truncation we know a priori that a datum could
not have occurred outside the truncation range.

5.2.7.3 Constraints and ordering

NIMBLE provides a more general way to enforce constraints using dconstraint(cond). For ex-
ample, we could specify that the sum of mu1 and mu2 must be positive like this:
mu1 ~ dnorm(0, 1)
mu2 ~ dnorm(0, 1)
constraint_data ~ dconstraint(mu1 + mu2 > 0)

56 CHAPTER 5. WRITING MODELS IN NIMBLE’S DIALECT OF BUGS

with constraint_data set (as data) to 1. This is equivalent to a half-normal distribution on the
half-plane 𝜇1 + 𝜇2 > 0. Nodes following dconstraint should be provided as data for the same
reason of avoiding unintended initialization described above for dinterval.

Important: the model should be initialized so that the constraints are satisfied. Otherwise, NIM-
BLE will initialize from the prior, which may not produce a valid initial value and may cause
algorithms (particularly) MCMC to fail.

Formally, dconstraint(cond) is a probability distribution on {0, 1} such that 𝑃(1) = 1 if cond is
TRUE and 𝑃 (0) = 1 if cond is FALSE.

Of course, in many cases, parameterizing the model so that the constraints are automatically
respected may be a better strategy than using dconstraint. One should be cautious about con-
straints that would make it hard for an MCMC or optimization to move through the parameter
space (such as equality constraints that involve two or more parameters). For such restrictive con-
straints, general purpose algorithms that are not tailored to the constraints may fail or be inefficient.
If constraints are used, it will generally be wise to ensure the model is initialized with values that
satisfy them.

5.2.7.3.1 Ordering To specify an ordering of parameters, such as 𝛼1 <= 𝛼2 <= 𝛼3 one can
use dconstraint as follows:
constraint_data ~ dconstraint(alpha1 <= alpha2 & alpha2 <= alpha3)

Note that unlike in BUGS, one cannot specify prior ordering using syntax such as
alpha[1] ~ dnorm(0, 1) I(, alpha[2])
alpha[2] ~ dnorm(0, 1) I(alpha[1], alpha[3])
alpha[3] ~ dnorm(0, 1) I(alpha[2],)

as this does not represent a directed acyclic graph.

Also note that specifying prior ordering using T(,) can result in possibly unexpected results. For
example:
alpha1 ~ dnorm(0, 1)
alpha2 ~ dnorm(0, 1) T(alpha1,)
alpha3 ~ dnorm(0, 1) T(alpha2,)

will enforce alpha1 ≤ alpha2 ≤ alpha3, but it does not treat the three parameters symmetrically.
Instead it puts a marginal prior on alpha1 that is standard normal and then constrains alpha2
and alpha3 to follow truncated normal distributions. This is not equivalent to a symmetric prior
on the three alphas that assigns zero probability density when values are not in order.

NIMBLE does not support the JAGS sort syntax.

Chapter 6

Building and using models

This chapter explains how to build and manipulate model objects starting from BUGS code.

6.1 Creating model objects
NIMBLE provides two functions for creating model objects: nimbleModel and readBUGSmodel. The
first, nimbleModel, is more general and was illustrated in Chapter 2. The second, readBUGSmodel
provides compatibility with BUGS file formats for models, variables, data, and initial values for
MCMC.

In addition one can create new model objects from existing model objects.

6.1.1 Using nimbleModel to create a model
nimbleModel processes BUGS code to determine all the nodes, variables, and their relationships
in a model. Any constants must be provided at this step. Data and initial values can optionally
be provided. BUGS code passed to nimbleModel must go through nimbleCode.

We look again at the pump example from the introduction:
pumpCode <- nimbleCode({

for (i in 1:N){
theta[i] ~ dgamma(alpha,beta);
lambda[i] <- theta[i]*t[i];
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0);
beta ~ dgamma(0.1,1.0);

})

pumpConsts <- list(N = 10,
t = c(94.3, 15.7, 62.9, 126, 5.24,

31.4, 1.05, 1.05, 2.1, 10.5))

pumpData <- list(x = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22))

57

58 CHAPTER 6. BUILDING AND USING MODELS

pumpInits <- list(alpha = 1, beta = 1,
theta = rep(0.1, pumpConsts$N))

pump <- nimbleModel(code = pumpCode, name = "pump", constants = pumpConsts,
data = pumpData, inits = pumpInits)

6.1.1.1 Data and constants

NIMBLE makes a distinction between data and constants:

• Constants can never be changed and must be provided when a model is defined. For example,
a vector of known index values, such as for block indices, helps define the model graph itself
and must be provided as constants. Variables used in the index ranges of for-loops must also
be provided as constants.

• Data is a label for the role a node plays in the model. Nodes marked as data will by default
be protected from any functions that would simulate over their values (see simulate in
Chapter 13), but it is possible to over-ride that default or to change their values by direct
assignment. This allows an algorithm to be applied to many data sets in the same model
without re-creating the model each time. It also allows simulation of data in a model.

WinBUGS, OpenBUGS and JAGS do not allow data values to be changed or different nodes to be
labeled as data without starting from the beginning again. Hence they do not distinguish between
constants and data.

For compatibility with BUGS and JAGS, NIMBLE allows both to be provided in the constants
argument to nimbleModel, in which case NIMBLE handles values for stochastic nodes as data and
everything else as constants.

Values for nodes that appear only on the right-hand side of BUGS declarations (e.g., covari-
ates/predictors) can be provided as constants or as data or initial values. There is no real difference
between providing as data or initial values and the values can be added after building a model via
setInits or setData. However if provided as data, calls to setInits will not overwrite those
values (though direct assignment of values will overwrite those values).

6.1.1.2 Providing (or changing) data and initial values for an existing model

Whereas constants must be provided during the call to nimbleModel, data and initial values can be
provided later via the model member functions setData and setInits. For example, if pumpData
is a named list of data values (as above), then pump$setData(pumpData) sets the named variables
to the values in the list.

setData does two things: it sets the values of the (stochastic) data nodes, and it flags those nodes
as containing data. nimbleFunction programmers can then use that information to control whether
an algorithm should over-write data or not. For example, NIMBLE’s simulate functions by default
do not overwrite data values but can be told to do so. Values of data variables can be replaced,
and the indication of which nodes should be treated as data can be reset by using the resetData
method, e.g. pump$resetData().

Data nodes cannot be deterministic, and using setData on deterministic nodes (or passing values for

6.1. CREATING MODEL OBJECTS 59

deterministic nodes via the data argument to nimbleModel) will not flag those nodes as containing
data. It will set the values of those nodes, but that will presumably be overwritten as soon as the
nodes are deterministically calculated.

To change data values without any modification of which nodes are flagged as containing data, sim-
ply use R’s usual assignment syntax to assign values in a compiled (or, more rarely, an uncompiled)
model, e.g.,
cModel$y <- c(1.5, 2.5, 1.7)

This can be useful for running an MCMC with a different dataset of the same size (and of course the
same pattern of missingness, if any) without having to rebuild and recompile the MCMC, such as
in a simulation study. It is possible to change the data values in a compiled model using setData,
but we don’t recommend doing this because setData won’t modify which nodes are flagged as
containing data in the already-constructed MCMC, thereby potentially introducing confusion.

6.1.1.3 Missing data values

Sometimes one needs a model variable to have a mix of data and non-data, often due to missing
data values. In NIMBLE, when data values are provided, any nodes with NA values will not be
labeled as data. A node following a multivariate distribution must be either entirely observed or
entirely missing.

Here’s an example of running an MCMC on the pump model, with two of the observations taken
to be missing. Some of the steps in this example are documented more below. NIMBLE’s default
MCMC configuration will treat the missing values as unknowns to be sampled, as can be seen in
the MCMC output here.
pumpMiss <- pump$newModel()
pumpMiss$resetData()
pumpDataNew <- pumpData
pumpDataNew$x[c(1, 3)] <- NA
pumpMiss$setData(pumpDataNew)

pumpMissConf <- configureMCMC(pumpMiss)

===== Monitors =====
thin = 1: alpha, beta
===== Samplers =====
RW sampler (1)
- alpha
posterior_predictive sampler (2)
- theta[] (2 elements)
conjugate sampler (9)
- beta
- theta[] (8 elements)
===== Comments =====
pumpMissConf$addMonitors('x', 'alpha', 'beta', 'theta')

thin = 1: alpha, beta, theta, x

60 CHAPTER 6. BUILDING AND USING MODELS

pumpMissMCMC <- buildMCMC(pumpMissConf)
Cobj <- compileNimble(pumpMiss, pumpMissMCMC)

niter <- 10
set.seed(0)
Cobj$pumpMissMCMC$run(niter)
samples <- as.matrix(Cobj$pumpMissMCMC$mvSamples)

samples[1:5, 13:17]

x[1] x[2] x[3] x[4] x[5]
[1,] 12 1 0 14 3
[2,] 7 1 35 14 3
[3,] 19 1 4 14 3
[4,] 61 1 36 14 3
[5,] 70 1 61 14 3

Missing values may also occur in explanatory/predictor variables. Values for such variables should
be passed in via the data argument to nimbleModel, with NA for the missing values. In some
contexts, one would want to specify distributions for such explanatory variables, for example so
that an MCMC would impute the missing values.

6.1.1.4 Defining alternative models with the same code

Avoiding code duplication is a basic principle of good programming. In NIMBLE, one can use
definition-time if-then-else statements to create different models from the same code. As a simple
example, say we have a linear regression model and want to consider including or omitting x[2] as
an explanatory variable:
regressionCode <- nimbleCode({

intercept ~ dnorm(0, sd = 1000)
slope1 ~ dnorm(0, sd = 1000)
if(includeX2) {

slope2 ~ dnorm(0, sd = 1000)
for(i in 1:N)

predictedY[i] <- intercept + slope1 * x1[i] + slope2 * x2[i]
} else {

for(i in 1:N) predictedY[i] <- intercept + slope1 * x1[i]
}
sigmaY ~ dunif(0, 100)
for(i in 1:N) Y[i] ~ dnorm(predictedY[i], sigmaY)

})

includeX2 <- FALSE
modelWithoutX2 <- nimbleModel(regressionCode, constants = list(N = 30),

check=FALSE)
modelWithoutX2$getVarNames()

[1] "intercept" "slope1"

6.1. CREATING MODEL OBJECTS 61

[3] "predictedY" "sigmaY"
[5] "lifted_d1_over_sqrt_oPsigmaY_cP" "Y"
[7] "x1"
includeX2 <- TRUE
modelWithX2 <- nimbleModel(regressionCode, constants = list(N = 30),

check = FALSE)
modelWithX2$getVarNames()

[1] "intercept" "slope1"
[3] "slope2" "predictedY"
[5] "sigmaY" "lifted_d1_over_sqrt_oPsigmaY_cP"
[7] "Y" "x1"
[9] "x2"

Whereas the constants are a property of the model definition – since they may help determine the
model structure itself – data nodes can be different in different copies of the model generated from
the same model definition. The setData and setInits described above can be used for each copy
of the model.

6.1.1.5 Providing dimensions via nimbleModel

nimbleModel can usually determine the dimensions of every variable from the declarations in the
BUGS code. However, it is possible to use a multivariate object only with empty indices (e.g. x[,]),
in which case the dimensions must be provided as an argument to nimbleModel.

Here’s an example with multivariate nodes. The first provides indices, so no dimensions argument
is needed, while the second omits the indices and provides a dimensions argument instead.
code <- nimbleCode({

y[1:K] ~ dmulti(p[1:K], n)
p[1:K] ~ ddirch(alpha[1:K])
log(alpha[1:K]) ~ dmnorm(alpha0[1:K], R[1:K, 1:K])

})

K <- 5
model <- nimbleModel(code, constants = list(n = 3, K = K,

alpha0 = rep(0, K), R = diag(K)),
check = FALSE)

codeAlt <- nimbleCode({
y[] ~ dmulti(p[], n)
p[] ~ ddirch(alpha[])
log(alpha[]) ~ dmnorm(alpha0[], R[,])

})

model <- nimbleModel(codeAlt, constants = list(n = 3, K = K, alpha0 = rep(0, K),
R = diag(K)),

dimensions = list(y = K, p = K, alpha = K),
check = FALSE)

62 CHAPTER 6. BUILDING AND USING MODELS

In that example, since alpha0 and R are provided as constants, we don’t need to specify their
dimensions.

6.1.2 Creating a model from standard BUGS and JAGS input files
Users with BUGS and JAGS experience may have files set up in standard formats for use in
BUGS and JAGS. readBUGSmodel can read in the model, data/constant values and initial values
in those formats. It can also take information directly from R objects somewhat more flexibly than
nimbleModel, specifically allowing inputs set up similarly to those for BUGS and JAGS. In either
case, after processing the inputs, it calls nimbleModel. Note that unlike BUGS and JAGS, only a
single set of initial values can be specified in creating a model. Please see help(readBUGSmodel)
for argument details.

As an example of using readBUGSmodel, let’s create a model for the pump example from BUGS.
pumpDir <- system.file('classic-bugs', 'vol1', 'pump', package = 'nimble')
pumpModel <- readBUGSmodel('pump.bug', data = 'pump-data.R',

inits = 'pump-init.R', dir = pumpDir)

Note that readBUGSmodel allows one to include var and data blocks in the model file as in some
of the BUGS examples (such as inhaler). The data block pre-computes constant and data values.
Also note that if data and inits are provided as files, the files should contain R code that creates
objects analogous to what would populate the list if a list were provided instead. Please see the
JAGS manual examples or the classic_bugs directory in the NIMBLE package for example syntax.
NIMBLE by and large does not need the information given in a var block but occasionally this is
used to determine dimensionality, such as in the case of syntax like xbar <- mean(x[]) where x
is a variable that appears only on the right-hand side of BUGS expressions.

Note that NIMBLE does not handle formatting such as in some of the original BUGS examples in
which data was indicated with syntax such as data x in 'x.txt'.

6.1.3 Making multiple instances from the same model definition
Sometimes it is useful to have more than one copy of the same model. For example, an algorithm
(i.e., nimbleFunction) such as an MCMC will be bound to a particular model before it is run. A user
could build multiple algorithms to use the same model instance, or they may want each algorithm
to have its own instance of the model.

There are two ways to create new instances of a model, shown in this example:
simpleCode <- nimbleCode({

for(i in 1:N) x[i] ~ dnorm(0, 1)
})

Return the model definition only, not a built model
simpleModelDefinition <- nimbleModel(simpleCode, constants = list(N = 10),

returnDef = TRUE, check = FALSE)
Make one instance of the model
simpleModelCopy1 <- simpleModelDefinition$newModel(check = FALSE)
Make another instance from the same definition
simpleModelCopy2 <- simpleModelDefinition$newModel(check = FALSE)

6.2. NIMBLE MODELS ARE OBJECTS YOU CAN QUERY AND MANIPULATE 63

Ask simpleModelCopy2 for another copy of itself
simpleModelCopy3 <- simpleModelCopy2$newModel(check = FALSE)

Each copy of the model can have different nodes flagged as data and different values in any nodes.
They cannot have different values of N because that is a constant; it must be a constant because it
helps define the model.

6.2 NIMBLE models are objects you can query and manipulate

NIMBLE models are objects that can be modified and manipulated from R. In this section we
introduce some basic ways to use a model object. Chapter 13 covers more topics for writing
algorithms that use models.

6.2.1 What are variables and nodes?

This section discusses some basic concepts and terminology to be able to speak about NIMBLE
models clearly.

Suppose we have created a model from the following BUGS code.
mc <- nimbleCode({

a ~ dnorm(0, 0.001)
for(i in 1:5) {

y[i] ~ dnorm(a, sd = 0.1)
for(j in 1:3)

z[i,j] ~ dnorm(y[i], tau)
}
tau ~ dunif(0, 20)
y.squared[1:5] <- y[1:5]^2

})

model <- nimbleModel(mc, data = list(z = matrix(rnorm(15), nrow = 5)))

In NIMBLE terminology:

• The variables of this model are a, y, z, and y.squared.
• The nodes of this model are a, y[1] , … , y[5], z[1,1] , … , z[5, 3], and y.squared[1:5].

In graph terminology, nodes are vertices in the model graph.
• The node functions of this model are a ~ dnorm(0, 0.001), y[i] ~ dnorm(a, 0.1),

z[i,j] ~ dnorm(y[i], sd = 0.1), and y.squared[1:5] <- y[1:5]^2. Each node’s
calculations are handled by a node function. Sometimes the distinction between nodes and
node functions is important, but when it is not important we may refer to both simply as
nodes.

• The scalar elements of this model include all the scalar nodes as well as the scalar elements
y.squared[1] , … , y.squared[5] of the multivariate node y.squared[1:5].

64 CHAPTER 6. BUILDING AND USING MODELS

6.2.2 Determining the nodes and variables in a model

One can determine the variables in a model using getVarNames and the nodes in a model using
getNodeNames. Optional arguments to getNodeNames allow you to select only certain types of
nodes, as discussed in Section 13.1.1 and in the R help for getNodeNames.
model$getVarNames()

[1] "a" "y"
[3] "lifted_d1_over_sqrt_oPtau_cP" "z"
[5] "tau" "y.squared"
model$getNodeNames()

[1] "a" "tau"
[3] "y[1]" "y[2]"
[5] "y[3]" "y[4]"
[7] "y[5]" "lifted_d1_over_sqrt_oPtau_cP"
[9] "y.squared[1:5]" "z[1, 1]"
[11] "z[1, 2]" "z[1, 3]"
[13] "z[2, 1]" "z[2, 2]"
[15] "z[2, 3]" "z[3, 1]"
[17] "z[3, 2]" "z[3, 3]"
[19] "z[4, 1]" "z[4, 2]"
[21] "z[4, 3]" "z[5, 1]"
[23] "z[5, 2]" "z[5, 3]"

Note that some of the nodes may be ‘lifted’ nodes introduced by NIMBLE (Section 13.1.2). In this
case lifted_d1_over_sqrt_oPtau_cP (this is a node for the standard deviation of the z nodes
using NIMBLE’s canonical parameterization of the normal distribution) is the only lifted node in
the model.

To determine the dependencies of one or more nodes in the model, you can use getDependencies
as discussed in Section 13.1.3.

6.2.3 Accessing nodes

Model variables can be accessed and set just as in R using $ and [[]]. For example
model$a <- 5
model$a

[1] 5
model[["a"]]

[1] 5
model$y[2:4] <- rnorm(3)
model$y

[1] NA -0.7317482 0.8303732 -1.2080828 NA

6.2. NIMBLE MODELS ARE OBJECTS YOU CAN QUERY AND MANIPULATE 65

model[["y"]][c(1, 5)] <- rnorm(2)
model$y

[1] -1.0479844 -0.7317482 0.8303732 -1.2080828 1.4411577
model$z[1,]

[1] 2.0752450 0.2199248 -0.7660820

While nodes that are part of a variable can be accessed as above, each node also has its own name
that can be used to access it directly. For example, y[2] has the name ‘y[2]’ and can be accessed
by that name as follows:
model[["y[2]"]]

[1] -0.7317482
model[["y[2]"]] <- -5
model$y

[1] -1.0479844 -5.0000000 0.8303732 -1.2080828 1.4411577
model[["z[2, 3]"]]

[1] -0.4302118
model[["z[2:4, 1:2]"]][1, 2]

[1] -1.46725
model$z[2, 2]

[1] -1.46725

Notice that node names can include index blocks, such as model[["z[2:4, 1:2]"]], and these are
not strictly required to correspond to actual nodes. Such blocks can be subsequently sub-indexed
in the regular R manner, such as model[["z[2:4, 1:2]"]][1, 2].

6.2.4 How nodes are named
Every node has a name that is a character string including its indices, with a space after every
comma. For example, X[1, 2, 3] has the name ‘X[1, 2, 3]’. Nodes following multivariate distri-
butions have names that include their index blocks. For example, a multivariate node for X[6:10,
3] has the name ‘X[6:10, 3]’.

The definitive source for node names in a model is getNodeNames, described previously.

In the event you need to ensure that a name is formatted correctly, you can use the
expandNodeNames method. For example, to get the spaces correctly inserted into ‘X[1,1:5]’:
multiVarCode <- nimbleCode({

X[1, 1:5] ~ dmnorm(mu[], cov[,])
X[6:10, 3] ~ dmnorm(mu[], cov[,])

})

66 CHAPTER 6. BUILDING AND USING MODELS

multiVarModel <- nimbleModel(multiVarCode, dimensions =
list(mu = 5, cov = c(5,5)), calculate = FALSE)

multiVarModel$expandNodeNames("X[1,1:5]")

[1] "X[1, 1:5]"

Alternatively, for those inclined to R’s less commonly used features, a nice trick is to use its parse
and deparse functions.
deparse(parse(text = "X[1,1:5]", keep.source = FALSE)[[1]])

[1] "X[1, 1:5]"

The keep.source = FALSE makes parse more efficient.

6.2.5 Why use node names?

Syntax like model[["z[2, 3]"]] may seem strange at first, because the natural habit of an R user
would be model[["z"]][2,3]. To see its utility, consider the example of writing the nimbleFunction
given in Section 2.8. By giving every scalar node a name, even if it is part of a multivariate variable,
one can write functions in R or NIMBLE that access any single node by a name, regardless of the
dimensionality of the variable in which it is embedded. This is particularly useful for NIMBLE,
which resolves how to access a particular node during the compilation process.

6.2.6 Checking if a node holds data

Finally, you can query whether a node is flagged as data using the isData method applied to one
or more nodes or nodes within variables:
model$isData('z[1]')

[1] TRUE
model$isData(c('z[1]', 'z[2]', 'a'))

[1] TRUE TRUE FALSE
model$isData('z')

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
model$isData('z[1:3, 1]')

[1] TRUE TRUE TRUE

6.3 Using models in parallel
NIMBLE uses Reference Classes and R6 classes for models and algorithms. Objects of these classes
are passed by reference and copies of such objects are simply new variable names that reference the
same underlying object.

6.3. USING MODELS IN PARALLEL 67

Thus to run an algorithm in parallel on a given model, one must create multiple copies of the model
and algorithm, and compiled versions of these, by calling nimbleModel, buildMCMC, compileNimble,
etc. once for each copy. In other words all such calls should be within the parallelized block of
code.

For a worked example in the context of MCMC, please see the parallelization example on our
webpage.

https://r-nimble.org/nimbleExamples/parallelizing_NIMBLE.html
https://r-nimble.org/nimbleExamples/parallelizing_NIMBLE.html

68 CHAPTER 6. BUILDING AND USING MODELS

Part III

Algorithms in NIMBLE

69

Chapter 7

MCMC

NIMBLE provides a variety of paths to creating and executing an MCMC algorithm, which differ
greatly in their simplicity of use, and also in the options available and customizability.

The most direct approach to invoking the MCMC engine is using the nimbleMCMC function (Section
7.1). This one-line call creates and executes an MCMC, and provides a wide range of options for
controlling the MCMC: specifying monitors, burn-in, and thinning, running multiple MCMC chains
with different initial values, and returning posterior samples, summary statistics, and/or a WAIC
value. However, this approach is restricted to using NIMBLE’s default MCMC algorithm; further
customization of, for example, the specific samplers employed, is not possible.

The lengthier and more customizable approach to invoking the MCMC engine on a particular
NIMBLE model object involves the following steps:

1. (Optional) Create and customize an MCMC configuration for a particular model:

a. Use configureMCMC to create an MCMC configuration (see Section 7.2). The configura-
tion contains a list of samplers with the node(s) they will sample.

b. (Optional) Customize the MCMC configuration:

i. Add, remove, or re-order the list of samplers (Section 7.11 and help(samplers) in
R for details), including adding your own samplers (Section 15.5);

ii. Change the tuning parameters or adaptive properties of individual samplers;
iii. Change the variables to monitor (record for output) and thinning intervals for

MCMC samples.

2. Use buildMCMC to build the MCMC object and its samplers either from the model (using
default MCMC configuration) or from a customized MCMC configuration (Section 7.3).

3. Compile the MCMC object (and the model), unless one is debugging and wishes to run the
uncompiled MCMC.

4. Run the MCMC and extract the samples (Sections 7.5, 7.6 and 7.7).

5. Optionally, calculate the WAIC (Section 7.8).

Prior to version 0.8.0, NIMBLE provided two additional functions, MCMCsuite and compareMCMCs,
to facilitate comparison of multiple MCMC algorithms, either internal or external to NIMBLE.

71

72 CHAPTER 7. MCMC

Those capabilities have been redesigned and moved into a separate package called compareMCMCs.

End-to-end examples of MCMC in NIMBLE can be found in Sections 2.5-2.6 and Section 7.12.

7.1 One-line invocation of MCMC: nimbleMCMC
The most direct approach to executing an MCMC algorithm in NIMBLE is using nimbleMCMC.
This single function can be used to create an underlying model and associated MCMC algorithm,
compile both of these, execute the MCMC, and return samples, summary statistics, and a WAIC
value. This approach circumvents the longer (and more flexible) approach using nimbleModel,
configureMCMC, buildMCMC, compileNimble, and runMCMC, which is described subsequently.

The nimbleMCMC function provides control over the:

• number of MCMC iterations in each chain;
• number of MCMC chains to execute;
• number of burn-in samples to discard from each chain;
• thinning interval on which samples should be recorded;
• model variables to monitor and return posterior samples;
• initial values, or a function for generating initial values for each chain;
• setting the random number seed;
• returning posterior samples as a matrix or a coda mcmc object;
• returning posterior summary statistics; and
• returning a WAIC value calculated using post-burn-in samples from all chains.

This entry point for using nimbleMCMC is the code, constants, data, and inits arguments that
are used for building a NIMBLE model (see Chapters 5 and 6). However, when using nimbleMCMC,
the inits argument can also specify a list of lists of initial values that will be used for each MCMC
chain, or a function that generates a list of initial values, which will be generated at the onset
of each chain. As an alternative entry point, a NIMBLE model object can also be supplied to
nimbleMCMC, in which case this model will be used to build the MCMC algorithm.

Based on its arguments, nimbleMCMC optionally returns any combination of

• Posterior samples,
• Posterior summary statistics, and
• WAIC value.

The above are calculated and returned for each MCMC chain, using the post-burn-in and thinned
samples. Additionally, posterior summary statistics are calculated for all chains combined when
multiple chains are run.

Several example usages of nimbleMCMC are shown below:
code <- nimbleCode({

mu ~ dnorm(0, sd = 1000)
sigma ~ dunif(0, 1000)
for(i in 1:10)

x[i] ~ dnorm(mu, sd = sigma)
})
data <- list(x = c(2, 5, 3, 4, 1, 0, 1, 3, 5, 3))
initsFunction <- function() list(mu = rnorm(1,0,1), sigma = runif(1,0,10))

7.2. THE MCMC CONFIGURATION 73

execute one MCMC chain, monitoring the "mu" and "sigma" variables,
with thinning interval 10. fix the random number seed for reproducible
results. by default, only returns posterior samples.
mcmc.out <- nimbleMCMC(code = code, data = data, inits = initsFunction,

monitors = c("mu", "sigma"), thin = 10,
niter = 20000, nchains = 1, setSeed = TRUE)

note that the inits argument to nimbleModel must be a list of
initial values, whereas nimbleMCMC can accept inits as a function
for generating new initial values for each chain.
initsList <- initsFunction()
Rmodel <- nimbleModel(code, data = data, inits = initsList)

using the existing Rmodel object, execute three MCMC chains with
specified burn-in. return samples, summary statistics, and WAIC.
mcmc.out <- nimbleMCMC(model = Rmodel,

niter = 20000, nchains = 3, nburnin = 2000,
summary = TRUE, WAIC = TRUE)

run ten chains, generating random initial values for each
chain using the inits function specified above.
only return summary statistics from each chain; not all the samples.
mcmc.out <- nimbleMCMC(model = Rmodel, nchains = 10, inits = initsFunction,

samples = FALSE, summary = TRUE)

See help(nimbleMCMC) for further details.

7.2 The MCMC configuration
The MCMC configuration contains information needed for building an MCMC. When no customiza-
tion is needed, one can jump directly to the buildMCMC step below. An MCMC configuration is an
object of class MCMCconf, which includes:

• The model on which the MCMC will operate
• The model nodes which will be sampled (updated) by the MCMC
• The samplers and their internal configurations, called control parameters
• Two sets of variables that will be monitored (recorded) during execution of the MCMC and

thinning intervals for how often each set will be recorded. Two sets are allowed because it
can be useful to monitor different variables at different intervals

7.2.1 Default MCMC configuration
Assuming we have a model named Rmodel, the following will generate a default MCMC configura-
tion:
mcmcConf <- configureMCMC(Rmodel)

The default configuration will contain a single sampler for each node in the model, and the default

74 CHAPTER 7. MCMC

ordering follows the topological ordering of the model.

7.2.1.1 Default assignment of sampler algorithms

The default sampler assigned to a stochastic node is determined by the following, in order of
precedence:

1. If the node has no data nodes in its entire downstream dependency network, a
posterior_predictive sampler is assigned. This sampler updates the node in ques-
tion and all downstream stochastic nodes by simulating new values from each node’s
conditional distribution. As of version 0.13.0, the operation of the posterior_predictive
sampler has changed in order to improve MCMC mixing. See Section 7.2.1.2.

2. If the node has a conjugate relationship between its prior distribution and the distributions
of its stochastic dependents, a conjugate (‘Gibbs’) sampler is assigned.

3. If the node follows a multinomial distribution, then a RW_multinomial sampler is assigned.
This is a discrete random-walk sampler in the space of multinomial outcomes.

4. If a node follows a Dirichlet distribution, then a RW_dirichlet sampler is assigned. This is
a random walk sampler in the space of the simplex defined by the Dirichlet.

5. If a node follows an LKJ correlation distribution, then a RW_block_lkj_corr_cholesky sam-
pler is assigned. This is a block random walk sampler in a transformed space where the
transformation uses the signed stickbreaking approach described in Section 10.12 of Stan
Development Team (2021b).

6. If the node follows any other multivariate distribution, then a RW_block sampler is assigned for
all elements. This is a Metropolis-Hastings adaptive random-walk sampler with a multivariate
normal proposal (Roberts and Sahu, 1997).

7. If the node is binary-valued (strictly taking values 0 or 1), then a binary sampler is assigned.
This sampler calculates the conditional probability for both possible node values and draws
the new node value from the conditional distribution, in effect making a Gibbs sampler.

8. If the node is otherwise discrete-valued, then a slice sampler is assigned (Neal, 2003).
9. If none of the above criteria are satisfied, then a RW sampler is assigned. This is a Metropolis-

Hastings adaptive random-walk sampler with a univariate normal proposal distribution.

Details of each sampler and its control parameters can be found by invoking help(samplers).

7.2.1.2 Sampling posterior predictive nodes

A posterior predictive node is a node that is not itself data and has no data nodes in its entire
downstream (descendant) dependency network. Such nodes play no role in inference for model
parameters but have often been included in BUGS models to accomplish posterior predictive checks
and similar calculations.

As of version 0.13.0, NIMBLE’s handling of posterior predictive nodes in MCMC sampling has
changed in order to improve MCMC mixing. Samplers for nodes that are not posterior predictive
nodes no longer condition on the values of the posterior predictive nodes. This produces a valid
MCMC over the posterior distribution marginalizing over the posterior predictive nodes. This
MCMC will generally mix better than an MCMC that conditions on the values of posterior predic-
tive nodes, by reducing the dimensionality of the parameter space and removing the dependence
between the sampled nodes and the posterior predictive nodes. At the end of each MCMC iteration,
the posterior predictive nodes are sampled by posterior_predictive sampler(s) based on their
conditional distribution(s).

7.2. THE MCMC CONFIGURATION 75

7.2.1.3 Options to control default sampler assignments

Very basic control of default sampler assignments is provided via two arguments to configureMCMC.
The useConjugacy argument controls whether conjugate samplers are assigned when possible,
and the multivariateNodesAsScalars argument controls whether scalar elements of multivari-
ate nodes are sampled individually. See help(configureMCMC) for usage details.

7.2.1.4 Default monitors

The default MCMC configuration includes monitors on all top-level stochastic nodes of the model.
Only variables that are monitored will have their samples saved for use outside of the MCMC.
MCMC configurations include two sets of monitors, each with different thinning intervals. By
default, the second set of monitors (monitors2) is empty.

7.2.1.5 Automated parameter blocking

The automated parameter blocking algorithm is no longer actively maintained. In some cases, it
may not operate correctly with more recent system features and/or distributions.

The default configuration may be replaced by one generated from an automated parameter blocking
algorithm. This algorithm determines groupings of model nodes that, when jointly sampled with a
RW_block sampler, increase overall MCMC efficiency. Overall efficiency is defined as the effective
sample size of the slowest-mixing node divided by computation time. This is done by:
autoBlockConf <- configureMCMC(Rmodel, autoBlock = TRUE)

Note that this using autoBlock = TRUE compiles and runs MCMCs, progressively exploring differ-
ent sampler assignments, so it takes some time and generates some output. It is most useful for
determining effective blocking strategies that can be re-used for later runs. The additional control
argument autoIt may also be provided to indicate the number of MCMC samples to be used in
each trial of the automated blocking procedure (default 20,000).

7.2.2 Customizing the MCMC configuration

The MCMC configuration may be customized in a variety of ways, either through additional named
arguments to configureMCMC or by calling methods of an existing MCMCconf object.

7.2.2.1 Controlling which nodes to sample

One can create an MCMC configuration with default samplers on just a particular set of nodes
using the nodes argument to configureMCMC. The value for the nodes argument may be a character
vector containing node and/or variable names. In the case of a variable name, a default sampler
will be added for all stochastic nodes in the variable. The order of samplers will match the order
of nodes. Any deterministic nodes will be ignored.

If a data node is included in nodes, it will be assigned a sampler. This is the only way in which
a default sampler may be placed on a data node and will result in overwriting data values in the
node.

76 CHAPTER 7. MCMC

7.2.2.2 Creating an empty configuration

If you plan to customize the choice of all samplers, it can be useful to obtain a configuration with
no sampler assignments at all. This can be done by any of nodes = NULL, nodes = character(),
or nodes = list().

7.2.2.3 Overriding the default sampler control list values

The default values of control list elements for all sampling algorithms may be overridden through
use of the control argument to configureMCMC, which should be a named list. Named elements in
the control argument will be used for all default samplers and any subsequent sampler added via
addSampler (see below). For example, the following will create the default MCMC configuration,
except all RW samplers will have their initial scale set to 3, and none of the samplers (RW, or
otherwise) will be adaptive.
mcmcConf <- configureMCMC(Rmodel, control = list(scale = 3, adaptive = FALSE))

When adding samplers to a configuration using addSampler, the default control list can also be
over-ridden.

7.2.2.4 Adding samplers to the configuration: addSampler

Additional samplers may be added to a configuration using the addSampler method of the MCMCconf
object. The addSampler method has two modes of operation, determined by the default argument.

When default = TRUE, addSampler will assign NIMBLE’s default sampling algorithm for each
node specified following the same protocol as configureMCMC. This may include conjugate samplers,
multivariate samplers, or otherwise, also using additional arguments to guide the selection process
(for example, useConjugacy and multivariateNodesAsScalars). In this mode of operation, the
type argument is not used.

When default = FALSE, or when this argument is omitted, addSampler uses the type argument
to specify the precise sampler to assign. Instances of this particular sampler are assigned to all
nodes specified. The type argument may be provided as a character string or a nimbleFunction
object. Valid character strings are indicated in help(samplers) (do not include "sampler_").
Added samplers can be labeled with a name argument, which is used in output of printSamplers.
Writing a new sampler as a nimbleFunction is covered in Section 15.5.

Regardless of the mode of operation, nodes are specified using either the target or the nodes
argument. The target argument does not undergo expansion to constituent nodes (unless default
= TRUE), and thus only a single sampler is added. The nodes argument is always expanded to the
underlying nodes, and separate samplers are added for each node. Eithe argument is provided as
a character vector. Newly added samplers will be appended to the end of current sampler list.
Adding a sampler for a node will not remove existing samplers operating on that node.

The hierarchy of precedence for control list elements for added samplers is:

1. The control list argument provided to addSampler;
2. The original control list argument provided to configureMCMC;
3. The default values, as defined in the sampling algorithm setup function.

See help(addSampler) for more details.

7.2. THE MCMC CONFIGURATION 77

7.2.2.5 Printing, re-ordering, modifying and removing samplers: printSamplers, re-
moveSamplers, setSamplers, and getSamplerDefinition

The current, ordered, list of all samplers in the MCMC configuration may be printed by calling
the printSamplers method. When you want to see only samplers acting on specific model nodes
or variables, provide those names as an argument to printSamplers. The printSamplers method
accepts arguments controlling the level of detail displayed as discussed in its R help information.
Print all samplers
mcmcConf$printSamplers()

Print all samplers operating on node "a[1]",
or any of the "beta[]" variables
mcmcConf$printSamplers(c("a[1]", "beta"))

Print all conjugate and slice samplers
mcmcConf$printSamplers(type = c("conjugate", "slice"))

Print all RW samplers operating on "x"
mcmcConf$printSamplers("x", type = "RW")

Print the first 100 samplers
mcmcConf$printSamplers(1:100)

Print all samplers in their order of execution
mcmcConf$printSamplers(executionOrder = TRUE)

Samplers may be removed from the configuration object using removeSamplers, which accepts a
character vector of node or variable names, or a numeric vector of indices.
Remove all samplers acting on "x" or any component of it
mcmcConf$removeSamplers("x")

Remove all samplers acting on "alpha[1]" and "beta[1]"
mcmcConf$removeSamplers(c("alpha[1]", "beta[1]"))

Remove the first five samplers
mcmcConf$removeSamplers(1:5)

Providing no argument removes all samplers
mcmcConf$removeSamplers()

Samplers to retain may be specified reordered using setSamplers, which also accepts a character
vector of node or variable names, or a numeric vector of indices.
Set the list of samplers to those acting on any components of the
model variables "x", "y", or "z".
mcmcConf$setSamplers(c("x", "y", "z"))

Set the list of samplers to only those acting on model nodes

78 CHAPTER 7. MCMC

"alpha[1]", "alpha[2]", ..., "alpha[10]"
mcmcConf$setSamplers("alpha[1:10]")

Truncate the current list of samplers to the first 10 and the 100th
mcmcConf$setSamplers(ind = c(1:10, 100))

The nimbleFunction definition underlying a particular sampler may be viewed using the
getSamplerDefinition method, using the sampler index as an argument. A node name argument
may also be supplied, in which case the definition of the first sampler acting on that node is
returned. In all cases, getSamplerDefinition only returns the definition of the first sampler
specified either by index or node name.
Return the definition of the third sampler in the mcmcConf object
mcmcConf$getSamplerDefinition(3)

Return the definition of the first sampler acting on node "x",
or the first of any indexed nodes comprising the variable "x"
mcmcConf$getSamplerDefinition("x")

7.2.2.6 Customizing individual sampler configurations: getSamplers, setSamplers,
setName, setSamplerFunction, setTarget, and setControl

Each sampler in an MCMCconf object is represented by a sampler configuration as a samplerConf
object. Each samplerConf is a reference class object containing the following (required) fields: name
(a character string), samplerFunction (a valid nimbleFunction sampler), target (the model node
to be sampled), and control (list of control arguments). The MCMCconf method getSamplers
allows access to the samplerConf objects. These can be modified and then passed as an argu-
ment to setSamplers to over-write the current list of samplers in the MCMC configuration object.
However, no checking of the validity of this modified list is performed; if the list of samplerConf
objects is corrupted to be invalid, incorrect behavior will result at the time of calling buildMCMC.
The fields of a samplerConf object can be modified using the access functions setName(name),
setSamplerFunction(fun), setTarget(target, model), and setControl(control).

Here are some examples:
retrieve samplerConf list
samplerConfList <- mcmcConf$getSamplers()

change the name of the first sampler
samplerConfList[[1]]$setName("newNameForThisSampler")

change the sampler function of the second sampler,
assuming existance of a nimbleFunction 'anotherSamplerNF',
which represents a valid nimbleFunction sampler.
samplerConfList[[2]]$setSamplerFunction(anotherSamplerNF)

change the 'adaptive' element of the control list of the third sampler
control <- samplerConfList[[3]]$control
control$adaptive <- FALSE

7.2. THE MCMC CONFIGURATION 79

samplerConfList[[3]]$setControl(control)

change the target node of the fourth sampler
samplerConfList[[4]]$setTarget("y", model) # model argument required

use this modified list of samplerConf objects in the MCMC configuration
mcmcConf$setSamplers(samplerConfList)

7.2.2.7 Customizing the sampler execution order

The ordering of sampler execution can be controlled as well. This allows for sampler functions
to execute multiple times within a single MCMC iteration, or the execution of different sampler
functions to be interleaved with one another.

The sampler execution order is set using the function setSamplerExecutionOrder, and the current
ordering of execution is retrieved using getSamplerExecutionOrder. For example, assuming the
MCMC configuration object mcmcConf contains five samplers:
first sampler to execute twice, in succession:
mcmcConf$setSamplerExecutionOrder(c(1, 1, 2, 3, 4, 5))

first sampler to execute multiple times, interleaved:
mcmcConf$setSamplerExecutionOrder(c(1, 2, 1, 3, 1, 4, 1, 5))

fourth sampler to execute 10 times, only
mcmcConf$setSamplerExecutionOrder(rep(4, 10))

omitting the argument to setSamplerExecutionOrder()
resets the ordering to each sampler executing once, sequentially
mcmcConf$setSamplerExecutionOrder()

retrieve the current ordering of sampler execution
ordering <- mcmcConf$getSamplerExecutionOrder()

print the sampler functions in the order of execution
mcmcConf$printSamplers(executionOrder = TRUE)

7.2.2.8 Monitors and thinning intervals: printMonitors, getMonitors, setMonitors,
addMonitors, resetMonitors and setThin

An MCMC configuration object contains two independent sets of variables to monitor, each
with their own thinning interval: thin corresponding to monitors, and thin2 corresponding to
monitors2. Monitors operate at the variable level. Only entire model variables may be monitored.
Specifying a monitor on a node, e.g., x[1], will result in the entire variable x being monitored.

The variables specified in monitors and monitors2 will be recorded (with thinning interval thin)
into objects called mvSamples and mvSamples2, contained within the MCMC object. These are
both modelValues objects; modelValues are NIMBLE data structures used to store multiple sets of

80 CHAPTER 7. MCMC

values of model variables1. These can be accessed as the member data mvSamples and mvSamples2
of the MCMC object, and they can be converted to matrices using as.matrix or lists using as.list
(see Section 7.7).

Monitors may be added to the MCMC configuration either in the original call to configureMCMC
or using the addMonitors method:
Using an argument to configureMCMC
mcmcConf <- configureMCMC(Rmodel, monitors = c("alpha", "beta"),

monitors2 = "x")

Calling a member method of the mcmcconf object
This results in the same monitors as above
mcmcConf$addMonitors("alpha", "beta")
mcmcConf$addMonitors2("x")

A new set of monitor variables can be added to the MCMC configuration, overwriting the current
monitors, using the setMonitors method:
Replace old monitors, now monitor "delta" and "gamma" only
mcmcConf$setMonitors("gamma", "delta")

Similarly, either thinning interval may be set at either step:
Using an argument to configureMCMC
mcmcConf <- configureMCMC(Rmodel, thin = 1, thin2 = 100)

Calling a member method of the mcmcConf object
This results in the same thinning intervals as above
mcmcConf$setThin(1)
mcmcConf$setThin2(100)

The current lists of monitors and thinning intervals may be displayed using the printMonitors
method. Both sets of monitors (monitors and monitors2) may be reset to empty character vectors
by calling the resetMonitors method. The methods getMonitors and getMonitors2 return the
currently specified monitors and monitors2 as character vectors.

7.2.2.9 Monitoring model log-probabilities

To record model log-probabilities from an MCMC, one can add monitors for logProb variables
(which begin with the prefix logProb_) that correspond to variables with (any) stochastic nodes.
For example, to record and extract log-probabilities for the variables alpha, sigma_mu, and Y:
mcmcConf <- configureMCMC(Rmodel, enableWAIC = TRUE)
mcmcConf$addMonitors("logProb_alpha", "logProb_sigma_mu", "logProb_Y")
Rmcmc <- buildMCMC(mcmcConf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)
Cmcmc$run(10000)
samples <- as.matrix(Cmcmc$mvSamples)

1See Section 14.1 for general information on modelValues.

7.3. BUILDING AND COMPILING THE MCMC 81

The samples matrix will contain both MCMC samples and model log-probabilities.

7.2.2.10 Using numeric samples to define a prior distribution

A set of numeric samples, perhaps generated from another MCMC algorithm, can be used to de-
fine the prior distribution of model nodes. This is accomplished using the prior_samples MCMC
sampler. When assigning the prior_samples sampler to a target node, you must also provide
a vector of numeric values (when target is a scalar node), or a matrix of values in the multidi-
menional case. A new value (or rows of values) is selected either sequentially (or randomly) from
this numeric vector/matrix, and assigned into the target node on each MCMC iteration. See
help(prior_samples) for more details:
mcmcConf <- configureMCMC(Rmodel)
mcmcConf$addSampler(target = 'theta', type = 'prior_samples', samples = rnorm(100))

7.3 Building and compiling the MCMC
Once the MCMC configuration object has been created, and customized to one’s liking, it may be
used to build an MCMC function:
Rmcmc <- buildMCMC(mcmcConf)

buildMCMC is a nimbleFunction. The returned object Rmcmc is an instance of the nimbleFunction
specific to configuration mcmcConf (and of course its associated model).

Note that if you would like to be able to calculate the WAIC of the model, you should usu-
ally set enableWAIC = TRUE as an argument toconfigureMCMC (or to buildMCMC if not using
configureMCMC), or set nimbleOptions(MCMCenableWAIC = TRUE), which will enable WAIC cal-
culations for all subsequently built MCMC functions. For more information on WAIC calculations,
including situations in which you can calculate WAIC without having set enableWAIC = TRUE see
Section 7.8 or help(waic) in R.

When no customization is needed, one can skip configureMCMC and simply provide a model object
to buildMCMC. The following two MCMC functions will be identical:
mcmcConf <- configureMCMC(Rmodel) # default MCMC configuration
Rmcmc1 <- buildMCMC(mcmcConf)

Rmcmc2 <- buildMCMC(Rmodel) # uses the default configuration for Rmodel

For speed of execution, we usually want to compile the MCMC function to C++ (as is the case
for other NIMBLE functions). To do so, we use compileNimble. If the model has already been
compiled, it should be provided as the project argument so the MCMC will be part of the same
compiled project. A typical compilation call looks like:
Cmcmc <- compileNimble(Rmcmc, project = Rmodel)

Alternatively, if the model has not already been compiled, they can be compiled together in one
line:
Cmcmc <- compileNimble(Rmodel, Rmcmc)

82 CHAPTER 7. MCMC

Note that if you compile the MCMC with another object (the model in this case), you’ll need to
explicitly refer to the MCMC component of the resulting object to be able to run the MCMC:
Cmcmc$Rmcmc$run(niter = 1000)

7.4 Initializing MCMC

To see how to provide initial values, see help(runMCMC), help(nimbleMCMC), or help(nimbleModel).

It is often important to provide valid and reasonable initial values to an MCMC, either as fixed
values or via an initialization function.

Not doing so can cause slow convergence or even failure of an MCMC algorithm (e.g., if the values
the model is initialized with are not valid). When starting an MCMC, when NIMBLE encounters
a missing parameter value, it simulates from the prior distribution. NIMBLE can be more sensitive
to missing or bad starting values than some MCMC packages.

The following cases are particularly important to consider when initializing:

• In a model with flat priors (i.e., using x~dflat() or x~dhalfflat()), NIMBLE cannot gen-
erate initial values from those priors.

• In a model with diffuse priors, initializing from the prior can give unreasonable/extreme initial
values.

• In a model with stochastic indices (e.g., x[idx[i]] with idx[i] unknown), those indices
should have (valid) initial values.

• In a model with constraints (via dconstraint), the model should be initialized such that the
constraints are satisfied.

• In a model with censoring (via dinterval), the initial value(s) of t in dinterval for the
censored node(s) should be consistent with the censoring that is specified.

That said, some MCMC algorithms (such a conjugate samplers) don’t use the initial values, so flat
or diffuse priors on nodes assigned such samplers will not be a problem with regard to initialization.

Many user questions and problems end up being related to missing or bad initial values. Some
suggestions for diagnosing initialization problems include:

• Run model$initializeInfo() to find uninitialized nodes.
• Run model$calculate() to see if the full model log probability density can be calculated

(values of -Inf, NA, NaN indicate there are missing or invalid initial values).
• To debug the specific node(s) whose initial value(s) are causing problems, run model$calculate(nodes)

on specific nodes to find their log probability density values, looking look for values of -Inf,
NA, or NaN.

• For the node(s) with invalid log probability density, inspect the values of the node(s) and
parameter(s) of the distribution(s) assigned to those node(s). You can inspect values of a
variable in the model using natural R syntax, model$variable_name.

• With a compiled or uncompiled model, you can run the model initialization (but no MCMC
iterations) with mcmc$run(niter = 0). Then inspect the values of model variables to see the
results of initialization.

7.5. USER-FRIENDLY EXECUTION OF MCMC ALGORITHMS: RUNMCMC 83

7.5 User-friendly execution of MCMC algorithms: runMCMC
Once an MCMC algorithm has been created using buildMCMC, the function runMCMC can be used
to run multiple chains and extract posterior samples, summary statistics and/or a WAIC value.
This is a simpler approach to executing an MCMC algorithm, than the process of executing and
extracting samples as described in Sections 7.6 and 7.7.

runMCMC also provides several user-friendly options such as burn-in, thinning, running multiple
chains, and different initial values for each chain. However, using runMCMC does not support several
lower-level options, such as timing the individual samplers internal to the MCMC, continuing an
existing MCMC run (picking up where it left off), or modifying the sampler execution ordering.

runMCMC takes arguments that will control the following aspects of the MCMC:

• Number of iterations in each chain;
• Number of chains;
• Number of burn-in samples to discard from each chain;
• Thinning interval for recording samples;
• Initial values, or a function for generating initial values for each chain;
• Setting the random number seed;
• Returning the posterior samples as a coda mcmc object;
• Returning summary statistics calculated from each chains; and
• Returning a WAIC value calculated using (post-burn-in) samples from all chains.

The following examples demonstrate some uses of runMCMC, and assume the existence of Cmcmc, a
compiled MCMC algorithm.
run a single chain, and return a matrix of samples
mcmc.out <- runMCMC(Cmcmc)

run three chains of 10000 samples, discard initial burn-in of 1000,
record samples thereafter using a thinning interval of 10,
and return of list of sample matrices
mcmc.out <- runMCMC(Cmcmc, niter=10000, nburnin=1000, thin=10, nchains=3)

run three chains, returning posterior samples, summary statistics,
and the WAIC value
mcmc.out <- runMCMC(Cmcmc, nchains = 3, summary = TRUE, WAIC = TRUE)

run two chains, and specify the initial values for each
initsList <- list(list(mu = 1, sigma = 1),

list(mu = 2, sigma = 10))
mcmc.out <- runMCMC(Cmcmc, nchains = 2, inits = initsList)

run ten chains of 100,000 iterations each, using a function to
generate initial values and a fixed random number seed for each chain.
only return summary statistics from each chain; not all the samples.
initsFunction <- function()

list(mu = rnorm(1,0,1), sigma = runif(1,0,100))
mcmc.out <- runMCMC(Cmcmc, niter = 100000, nchains = 10,

84 CHAPTER 7. MCMC

inits = initsFunction, setSeed = TRUE,
samples = FALSE, summary = TRUE)

See help(runMCMC) for further details.

7.6 Running the MCMC
The MCMC algorithm (either the compiled or uncompiled version) can be executed using the mem-
ber method mcmc$run (see help(buildMCMC) in R). The run method has one required argument,
niter, the number of iterations to be run.

The run method has optional arguments nburnin, thin and thin2. These can be used to specify
the number of pre-thinning burn-in samples to discard, and the post-burnin thinning intervals
for recording samples (corresponding to monitors and monitors2). If either thin and thin2
are provided, they will override the thinning intervals that were specified in the original MCMC
configuration object.

7.6.1 Rerunning versus restarting an MCMC
The run method has an optional reset argument. When reset = TRUE (the default value), the
following occurs prior to running the MCMC:

1. All model nodes are checked and filled or updated as needed, in valid (topological) order.
If a stochastic node is missing a value, it is populated using a call to simulate and its log
probability value is calculated. The values of deterministic nodes are calculated from their
parent nodes. If any right-hand-side-only nodes (e.g., explanatory variables) are missing a
value, an error results.

2. All MCMC sampler functions are reset to their initial state: the initial values of any sampler
control parameters (e.g., scale, sliceWidth, or propCov) are reset to their initial values, as
were specified by the original MCMC configuration.

3. The internal modelValues objects mvSamples and mvSamples2 are each resized to the appro-
priate length for holding the requested number of samples (niter/thin, and niter/thin2,
respectively).

This means that one can begin a new run of an existing MCMC without having to rebuild or
recompile the model or the MCMC. This can be helpful if one wants to use the same model and
MCMC configuration, but with different initial values, different values of data nodes (but which
nodes are data nodes must be the same), changes to covariate values(or other non-data, non-
parameter values) in the model, or a different number of MCMC iterations, thinning interval or
burn-in.

In contrast, when mcmc$run(niter, reset = FALSE) is called, the MCMC picks up from where
it left off, continuing the previous chain and expanding the output as needed. No values in the
model are checked or altered, and sampler functions are not reset to their initial states. (Similarly,
if using WAIC, one can use resetWAIC = FALSE so that the WAIC calculation is based on all the
samples from the expanded set of samples.)

The run method also has an optional resetMV argument. This argument is only considered
when'reset is set to FALSE. When mcmc$run(niter, reset = FALSE, resetMV = TRUE) is called
the internal modelValues objects mvSamples and mvSamples2 are each resized to the appropriate

7.7. EXTRACTING MCMC SAMPLES 85

length for holding the requested number of samples (niter/thin, and niter/thin2, respectively)
and the MCMC carries on from where it left off. In other words, the previously obtained samples
are deleted (e.g. to reduce memory usage) prior to continuing the MCMC. The default value of
resetMV is FALSE.

7.6.2 Measuring sampler computation times: getTimes
If you want to obtain the computation time spent in each sampler, you can set time=TRUE as a
run-time argument and then use the method getTimes() obtain the times. For example,
Cmcmc$run(niter, time = TRUE)
Cmcmc$getTimes()

will return a vector of the total time spent in each sampler, measured in seconds.

7.6.3 Assessing the adaption process of RW and RW_block samplers
If you’d like to see the evolution (over the iterations) of the acceptance proportion and proposal
scale information, you can use some internal methods provided by NIMBLE, after setting two
options to make the history accessible. Here we assume that cMCMC is the compiled MCMC object
and idx is the numeric index of the sampler function you want to access from amongst the list of
sampler functions that are part of the MCMC.
set options to make history accessible
nimbleOptions(buildInterfacesForCompiledNestedNimbleFunctions = TRUE)
nimbleOptions(MCMCsaveHistory = TRUE)
Next, set up and run your MCMC.
Now access the history information:
Cmcmc$samplerFunctions[[idx]]$getScaleHistory()
Cmcmc$samplerFunctions[[idx]]$getAcceptanceHistory()
Cmcmc$samplerFunctions[[idx]]$getPropCovHistory() ## only for RW_block

Note that modifying elements of the control list may greatly affect the performance of the RW_block
sampler. In particular, the sampler can take a long time to find a good proposal covariance when
the elements being sampled are not on the same scale. We recommend providing an informed
value for ‘propCov’ in this case (possibly simply a diagonal matrix that approximates the relative
scales), as well as possibly providing a value of ‘scale’ that errs on the side of being too small. You
may also consider decreasing ‘adaptFactorExponent’ and/or ‘adaptInterval’, as doing so has greatly
improved performance in some cases.

7.7 Extracting MCMC samples
After executing the MCMC, the output samples can be extracted as follows:
mvSamples <- mcmc$mvSamples
mvSamples2 <- mcmc$mvSamples2

These modelValues objects can be converted into matrices using as.matrix or lists using as.list:
samplesMatrix <- as.matrix(mvSamples)
samplesList <- as.list(mvSamples)

86 CHAPTER 7. MCMC

samplesMatrix2 <- as.matrix(mvSamples2)
samplesList2 <- as.list(mvSamples2)

The column names of the matrices will be the node names of nodes in the monitored variables.
Then, for example, the mean of the samples for node x[2] could be calculated as:
mean(samplesMatrix[, "x[2]"])

The list version will contain an element for each variable that will be the size and shape of the
variable with an additional index for MCMC iteration. By default MCMC iteration will be the
first index, but including iterationAsLastIndex = TRUE will make it the last index.

Obtaining samples as matrices or lists is most common, but see Section 14.1 for more about pro-
gramming with modelValues objects, especially if you want to write nimbleFunctions to use the
samples.

7.8 Calculating WAIC
The WAIC (Watanabe, 2010) can be calculated from the posterior samples produced during the
MCMC algorithm. Users have two options to calculate WAIC. The main approach requires enabling
WAIC when setting up the MCMC and allows access to a variety of ways to calculate WAIC. This
approach does not require that any specific monitors be set2 because the WAIC is calculated in an
online manner, accumulating the necessary quantities to calculate WAIC as the MCMC is run.

The second approach allows one to calculate the WAIC after an MCMC has been run using an
MCMC object or matrix (or dataframe) containing the posterior samples, but it requires the user
to have correctly specified the monitored variables and only provides the default way to calculate
WAIC. An advantage of the second approach is that one can specify additional burnin beyond that
specified for the MCMC.

Here we first discuss the main approach and then close the section by showing the second approach.
Specific details of the syntax are provided in help(waic).

To enable WAIC for the first approach, the argument enableWAIC = TRUE must be supplied to
configureMCMC (or to buildMCMC if not using configureWAIC), or the MCMCenableWAIC NIMBLE
option must have been set to TRUE.

The WAIC (as well as the pWAIC and lppd values) is extracted by the member method
mcmc$getWAIC (see help(waic) in R for more details) or is available as the WAIC element of the
runMCMC or nimbleMCMC output lists. One can use the member method mcmc$getWAICdetails for
additional quantities related to WAIC that are discussed below.

Note that there is not a unique value of WAIC for a model. WAIC is calculated from Equations 5,
12, and 13 in Gelman et al. (2014) (i.e., using pWAIC2), as discussed in detail in Hug and Paciorek
(2021). Therefore, NIMBLE provides user control over how WAIC is calculated in two ways.

First, by default NIMBLE provides the conditional WAIC, namely the version of WAIC where all
parameters directly involved in the likelihood are treated as 𝜃 for the purposes of Equation 5 from
Gelman et al. (2014). Users can request the marginal WAIC (see Ariyo et al. (2020)), namely the

2Prior to version 0.12.0, NIMBLE required specific monitors, because WAIC was calculated at the end of the
MCMC using the entire set of MCMC samples.

7.9. K-FOLD CROSS-VALIDATION 87

version of WAIC where latent variables are integrated over (i.e., using a marginal likelihood). This
is done by providing the waicControl list with a marginalizeNodes element to configureMCMC
or buildMCMC (when providing a model as the argument to buildMCMC). See help(waic) for more
details.

Second, WAIC relies on a partition of the observations, i.e., ‘pointwise’ prediction. By default, in
NIMBLE the sum over log pointwise predictive density values treats each data node as contributing
a single value to the sum. When a data node is multivariate, that data node contributes a single
value to the sum based on the joint density of the elements in the node. If one wants to group
data nodes such that the joint density within each group is used, one can provide the waicControl
list with a dataGroups element to configureMCMC or buildMCMC (when providing a model as the
argument to buildMCMC). See help(waic) for more details.

Note that based on a limited set of simulation experiments in Hug and Paciorek (2021), our tentative
recommendation is that users only use marginal WAIC if also using grouping.

Marginal WAIC requires using Monte Carlo simulation at each iteration of the MCMC to average
over draws for the latent variables. To assess the stability of the marginal WAIC to the number
of Monte Carlo iterations, one can examine how the WAIC changes with increasing iterations (up
to the full number of iterations specified via the nItsMarginal element of the waicControl list)
based on the WAIC_partialMC, lppd_partialMC, and pWAIC_partialMC elements of the detailed
WAIC output.

For comparing WAIC between two models, Vehtari et al. (2017) discuss using the per-observation
(more generally, per-data group) contributions to the overall WAIC values to get an approximate
standard error for the difference in WAIC between the models. These element-wise values are
available as the WAIC_elements, lppd_elements, and pWAIC_elements components of the detailed
WAIC output.

The second overall approach to WAIC available in NIMBLE allows one to calculate WAIC post
hoc after MCMC sampling using an MCMC object or matrix (or dataframe) containing posterior
samples. Simply set up the MCMC and run it without enabling WAIC (but making sure to
include in the monitors all stochastic parent nodes of the data nodes) and then use the function
calculateWAIC, as shown in this example:
samples <- runMCMC(Cmcmc, niter = 10000, nburnin = 1000)
Using calculateWAIC with an MCMC object
calculateWAIC(Cmcmc)
Using calculateWAIC with a matrix of samples
calculateWAIC(samples, model)
Specifying additional burnin, so only last 5000 (1000+4000) iterations used
calculateWAIC(Cmcmc, burnin = 4000)

This approach only provides conditional WAIC without any grouping of data nodes (though one
can achieve grouping by grouping data nodes into multivariate nodes).

7.9 k-fold cross-validation
The runCrossValidate function in NIMBLE performs k-fold cross-validation on a nimbleModel
fit via MCMC. More information can be found by calling help(runCrossValidate).

88 CHAPTER 7. MCMC

7.10 Variable selection using Reversible Jump MCMC
A common method for Bayesian variable selection in regression-style problems is to define a space of
different models and have MCMC sample over the models as well as the parameters for each model.
The models differ in which explanatory variables are included. Often this idea is implemented in
the BUGS language by writing the largest possible model and including indicator variables to turn
regression parameters off and on (see model code below for an example of how indicator variables can
be used). Foramally, that approach doesn’t sample between different models, instead embedding
the models in one large model. However, that approach can result in poor mixing and require
compromises in choices of prior distributions because a given regression parameter will sample
from its prior when the corresponding indicator is 0. It is also computationally wasteful, because
sampling effort will be spent on a coefficient even if it has no effect because the corresponding
indicator is 0.

A different view of the problem is that the different combinations of coefficients represent models
of different dimensions. Reversible Jump MCMC (Green, 1995) (RJMCMC) is a general frame-
work for MCMC simulation in which the dimension of the parameter space can vary between
iterates of the Markov chain. The reversible jump sampler can be viewed as an extension of the
Metropolis-Hastings algorithm onto more general state spaces. NIMBLE provides an implementa-
tion of RJMCMC for variable selection that requires the user to write the largest model of interest
and supports use of indicator variables but formally uses RJMCMC sampling for better mixing and
efficiency. When a coefficient is not in the model (or its indicator is 0), it will not be sampled, and
it will therefore not follow its prior in that case.

In technical detail, given two models 𝑀1 and 𝑀2 of possibly different dimensions, the core idea of
RJMCMC is to remove the difference in the dimensions of models 𝑀1 and 𝑀2 by supplementing
the corresponding parameters 𝜃1 and 𝜃2 with auxiliary variables 𝑢1→2 and 𝑢2→1 such that (𝜃1, 𝑢1→2)
and (𝜃2, 𝑢2→1) are in bijection, (𝜃2, 𝑢2→1) = Ψ(𝜃1, 𝑢1→2). The corresponding Metropolis-Hastings
acceptance probability is generalized accounting for the proposal density for the auxiliary variables.

NIMBLE implements RJMCMC for variable selection using a univariate normal distribution cen-
tered on 0 (or some fixed value) as the proposal density for parameters being added to the model.
Two ways to set up models for RJMCMC are supported, which differ by whether the inclusion
probabilities for each parameter are assumed known or must be written in the model:

• If the inclusion probabilities are assumed known, then RJMCMC may be used with regular
model code, i.e. model code written without heed to variable selection.

• If the inclusion probability is a parameter in the model, perhaps with its own prior, then
RJMCMC requires that indicator variables be written in the model code. The indicator
variables will be sampled using RJMCMC, but otherwise they are like any other nodes in the
model.

The steps to set up variable selection using RJMCMC are:

1. Write the model with indicator variables if needed.
2. Configure the MCMC as usual with configureMCMC.
3. Modify the resulting MCMC configuration object with configureRJ.

The configureRJ function modifies the MCMC configuration to (1) assign samplers that turn on
and off variable in the model and (2) modify the existing samplers for the regression coefficients to
use ‘toggled’ versions. The toggled versions invoke the samplers only when corresponding variable

7.10. VARIABLE SELECTION USING REVERSIBLE JUMP MCMC 89

is currently in the model. In the case where indicator variables are included in the model, sampling
to turn on and off variables is done using RJ_indicator samplers. In the case where indicator
variables are not included, sampling is done using RJ_fixed_prior samplers.

In the following we provide an example for the two different model specifications.

7.10.1 Using indicator variables
Here we consider a normal linear regression in which two covariates x1 and x2 are candidates to
be included in the model. The two corresponding coefficients are beta1 and beta2. The indicator
variables are z1 and z2, and their inclusion probability is psi. As described below, one can also
use vectors for a set of coefficients and corresponding indicator variables.
Linear regression with intercept and two covariates
code <- nimbleCode({

beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
z1 ~ dbern(psi) ## indicator variable associated with beta1
z2 ~ dbern(psi) ## indicator variable associated with beta2
psi ~ dbeta(1, 1) ## hyperprior on inclusion probability
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * z1 * x1[i] + beta2 * z2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

simulate some data
set.seed(1)
N <- 100
x1 <- runif(N, -1, 1)
x2 <- runif(N, -1, 1) ## this covariate is not included
Y <- rnorm(N, 1.5 + 2 * x1, sd = 1)

build the model and configure default MCMC

RJexampleModel <- nimbleModel(code, constants = list(N = N),
data = list(Y = Y, x1 = x1, x2 = x2),
inits = list(beta0 = 0, beta1 = 0, beta2 = 0,
sigma = sd(Y), z2 = 1, z1 = 1, psi = 0.5))

RJexampleConf <- configureMCMC(RJexampleModel)

For illustration, look at the default sampler assignments
RJexampleConf$printSamplers()

[1] conjugate_dnorm_dnorm_additive sampler: beta0
[2] conjugate_dnorm_dnorm_linear sampler: beta1

90 CHAPTER 7. MCMC

[3] conjugate_dnorm_dnorm_linear sampler: beta2
[4] RW sampler: sigma
[5] conjugate_dbeta_dbern_identity sampler: psi
[6] binary sampler: z1
[7] binary sampler: z2

At this point we can modify the MCMC configuration object, RJexampleConf, to use reversible
jump samplers for selection on beta1 and beta2.
configureRJ(conf = RJexampleConf,

targetNodes = c("beta1", "beta2"),
indicatorNodes = c('z1', 'z2'),
control = list(mean = c(0, 0), scale = 2))

The targetNodes argument gives the coefficients (nodes) for which we want to do variable selection.
The indicatorNodes gives the corresponding indicator nodes, ordered to match targetNodes. The
control list gives the means and scale (standard deviation) for normal reversible jump proposals
for targetNodes. The means will typically be 0 (by default mean = 0 and scale = 1), but they
could be anything. An optional control element called fixedValue can be provided in the non-
indicator setting; this gives the value taken by nodes in targetNodes when they are out of the
model (by default, fixedValue is 0). All control elements can be scalars or vectors. A scalar
values will be used for all targetNodes. A vector value must be of equal length as targetNodes
and will be used in order.

To use RJMCMC on a vector of coefficients with a corresponding vector of indicator variables, sim-
ply provide the variable names for targetNodes and indicatorNodes. For example, targetNodes
= "beta" is equivalent to targetNodes = c("beta[1]", "beta[2]") and indicatorNodes =
"z" is equivalent to indicatorNodes = c("z[1]", "z[2]"). Expansion of variable names into a
vector of node names will occur as described in Section 13.3.1.1. When using this method, both
arguments must be provided as variable names to be expanded.

Next we can see the result of configureRJ by printing the modified list of samplers:
RJexampleConf$printSamplers()

[1] conjugate_dnorm_dnorm_additive sampler: beta0
[2] RW sampler: sigma
[3] conjugate_dbeta_dbern_identity sampler: psi
[4] RJ_indicator sampler: z1, mean: 0, scale: 2, targetNode: beta1
[5] RJ_toggled sampler: beta1, samplerType: conjugate_dnorm_dnorm_linear
[6] RJ_indicator sampler: z2, mean: 0, scale: 2, targetNode: beta2
[7] RJ_toggled sampler: beta2, samplerType: conjugate_dnorm_dnorm_linear

An RJ_indicator sampler was assigned to each of z[1] and z[2] in place of the binary sampler,
while the samplers for beta[1]and beta[2] have been changed to RJ_toggled samplers. The
latter samplers contain the original samplers, in this case conjugate_dnorm_dnorm samplers, and
use them only when the corresponding indicator variable is equal to 1 (i.e., when the coefficient is
in the model).

Notice that the order of the samplers has changed, since configureRJ calls removeSampler for
nodes in targetNodes and indicatorNodes, and subsequently addSampler, which appends the
sampler to the end of current sampler list. Order can be modified by using setSamplers.

7.10. VARIABLE SELECTION USING REVERSIBLE JUMP MCMC 91

Also note that configureRJ modifies the MCMC configuration (first argument) and returns NULL.

7.10.2 Without indicator variables
We consider the same regression setting, but without the use of indicator variables and with fixed
probabilities of including each coefficient in the model.
Linear regression with intercept and two covariates
code <- nimbleCode({

beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
beta2 ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 100)
for(i in 1:N) {
Ypred[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}
})

build the model
RJexampleModel2 <- nimbleModel(code, constants = list(N = N),

data = list(Y = Y, x1 = x1, x2 = x2),
inits = list(beta0 = 0, beta1 = 0, beta2 = 0,

sigma = sd(Y)))

RJexampleConf2 <- configureMCMC(RJexampleModel2)

print NIMBLE default samplers
RJexampleConf2$printSamplers()

[1] conjugate_dnorm_dnorm_additive sampler: beta0
[2] conjugate_dnorm_dnorm_linear sampler: beta1
[3] conjugate_dnorm_dnorm_linear sampler: beta2
[4] RW sampler: sigma

In this case, since there are no indicator variables, we need to pass to configureRJ the prior
inclusion probabilities for each node in targetNodes, by specifying either one common value or a
vector of values for the argument priorProb. This case does not allow for a stochastic prior.
configureRJ(conf = RJexampleConf2,

targetNodes = c("beta1", "beta2"),
priorProb = 0.5,
control = list(mean = 0, scale = 2, fixedValue = c(1.5, 0)))

print samplers after configureRJ
RJexampleConf2$printSamplers()

[1] conjugate_dnorm_dnorm_additive sampler: beta0
[2] RW sampler: sigma
[3] RJ_fixed_prior sampler: beta1, priorProb: 0.5, mean: 0, scale: 2, fixedValue: 1.5
[4] RJ_toggled sampler: beta1, samplerType: conjugate_dnorm_dnorm_linear, fixedValue: 1.5

92 CHAPTER 7. MCMC

[5] RJ_fixed_prior sampler: beta2, priorProb: 0.5, mean: 0, scale: 2, fixedValue: 0
[6] RJ_toggled sampler: beta2, samplerType: conjugate_dnorm_dnorm_linear, fixedValue: 0

Since there are no indicator variables, the RJ_fixed_prior sampler is assigned directly to each
of beta[1] and beta[2] along with the RJ_toggled sampler. The former sets a coefficient to its
fixedValue when it is out of the model. The latter invokes the regular sampler for the coefficient
only if it is in the model at a given iteration.

If fixedValue is given when using indicatorNodes the values provided in fixedValue are ignored.
However the same behavior can be obtained in this situation, using a different model specification.
For example, the model in 7.10.1 can be modified to have beta1 equal to 1.5 when not in the model
as follows:

for(i in 1:N) {
Ypred[i] <- beta0 + (1 - z1) * 1.5 * beta1 * x1[i] +

z1 * beta1 * x1[i] + beta2 * z2 * x2[i]
Y[i] ~ dnorm(Ypred[i], sd = sigma)

}

7.11 Samplers provided with NIMBLE
Most documentation of MCMC samplers provided with NIMBLE can be found by invoking
help(samplers) in R. Here we provide additional explanation of conjugate samplers and how
complete customization can be achieved by making a sampler use an arbitrary log-likelihood
function, such as to build a particle MCMC algorithm.

7.11.1 Conjugate (‘Gibbs’) samplers
By default, configureMCMC() and buildMCMC() will assign conjugate samplers to all nodes satis-
fying a conjugate relationship, unless the option useConjugacy = FALSE is specified.

The current release of NIMBLE supports conjugate sampling of the relationships listed in Table
7.13.

Table 7.1: Conjugate relationships supported by NIMBLE’s
MCMC engine.

Prior Distribution Sampling (Dependent Node) Distribution Parameter
Beta Bernoulli prob

Binomial prob
Negative Binomial prob

Dirichlet Multinomial prob
Categorical prob

Flat Normal mean
Lognormal meanlog

Gamma Poisson lambda
Normal tau

3NIMBLE’s internal definitions of these relationships can be viewed with
nimble:::conjugacyRelationshipsInputList.

7.11. SAMPLERS PROVIDED WITH NIMBLE 93

Prior Distribution Sampling (Dependent Node) Distribution Parameter
Lognormal taulog
Gamma rate
Inverse Gamma scale
Exponential rate
Double Exponential rate
Weibull lambda

Halfflat Normal sd
Lognormal sdlog

Inverse Gamma Normal var
Lognormal varlog
Gamma scale
Inverse Gamma rate
Exponential scale
Double Exponential scale

Normal Normal mean
Lognormal meanlog

Multivariate Normal Multivariate Normal mean
Wishart Multivariate Normal prec
Inverse Wishart Multivariate Normal cov

Conjugate sampler functions may (optionally) dynamically check that their own posterior likelihood
calculations are correct. If incorrect, a warning is issued. However, this functionality will roughly
double the run-time required for conjugate sampling. By default, this option is disabled in NIMBLE.
This option may be enabled with nimbleOptions(verifyConjugatePosteriors = TRUE).

If one wants information about conjugate node relationships for other purposes, they can be ob-
tained using the checkConjugacy method on a model. This returns a named list describing all
conjugate relationships. The checkConjugacy method can also accept a character vector argument
specifying a subset of node names to check for conjugacy.

7.11.2 Hamiltonian Monte Carlo (HMC)
As of version 1.0.0, NIMBLE provides support for automatic differentiation (AD), as described in
Chapter 16. AD is needed for Hamiltonian Monte Carlo (HMC) sampling. The HMC algorithm is
provided through the nimbleHMC package, which requires version 1.0.0 (or higher) of the nimble
package.

HMC is an MCMC sampling algorithm that works by a physical analogy of frictionless motion on
a surface that is the negative log posterior density. HMC often achieves good mixing, although at
high computational cost. HMC sampling can operate on any continuous-valued model dimensions,
including multiple dimensions simultaneously. HMC sampling is more flexibly applicable using
nimbleHMC than in other implementations, since HMC can be applied to some parts of a model
while other samplers are used on other (potentially overlapping) parts of the same model. Indeed,
Neal (2011) discusses this mixed application of HMC with other sampling methods.

The nimbleHMC package provides two distinct HMC samplers, which implement two versions of
No-U-Turn (NUTS) HMC sampling. HMC-NUTS sampling is a self-tuning version of standard

94 CHAPTER 7. MCMC

HMC, which self-tunes the step-size and the number of integration steps used in the numeric
integrator’s exploration of parameter space. The NUTS_classic sampler in nimbleHMC implements
the original (“classic”) HMC-NUTS algorithm developed in Hoffman and Gelman (2014), which
was the seminal version of HMC-NUTS. The NUTS sampler in nimbleHMC is a modern version of
HMC-NUTS sampling with improved adaptation routines and convergence criteria, which matches
the HMC sampler available in version 2.32.2 of Stan (Stan Development Team, 2023).

The samplers provided in nimbleHMC can be used in nimble’s general MCMC system, and may be
used in combination with other samplers provided with nimble operating on different (or overlap-
ping) parts of the model. For convenience, nimbleHMC provides several different ways to set up and
run HMC which allow different degrees of control:

• nimbleHMC is analogous to nimbleMCMC: It accpets model code, data, inits and constants
arguments, and performs all steps from building the model to running one or more MCMC
chains. Use the nimbleHMC function if you want one call to apply NUTS sampling to all
continuous-valued model dimensions, and nimble’s default samplers for all discrete-valued
dimensions.

• buildHMC is analogous to buildMCMC: It accepts a model object as an argument, and builds
an MCMC algorithm which applies NUTS sampling to all continuous-valued model dimensions,
and nimble’s default samplers for all discrete-valued dimensions. Use buildHMC if you have
created a model object, and want to automatically build the default HMC algorithm for your
model.

• configureHMC is analogous to configureMCMC: It accepts a model object as an argument,
and sets up a default MCMC configuration containing one NUTS sampler operating on all
continuous-valued model dimensions, and nimble’s default samplers for all discrete-valued
dimensions. You can also specify which nodes should have samplers assigned. You can then
modify the MCMC configuration (use addSampler and other methods) to further customize it
before building and running the MCMC. Use configureHMC if you are familiar with MCMC
configuration objects, and may want to further customize your MCMC using HMC or other
samplers or monitors before building the MCMC.

• addHMC manages use of addSampler to specifically add an HMC sampler for a chosen set of
nodes to an exisiting MCMC configuration. It optionally removes other samplers operating
on the specified nodes. Use addHMC to add an HMC sampler operating one or more target
nodes to an exisiting MCMC configuration object.

• For the most fine-grained control, you can use the addSampler method speciying the the
argument type="NUTS" or type="NUTS_classic" to add HMC sampler(s) to an MCMC
configuration object.

As of version 1.1.0, we now support the following new functionality for AD in models:

• Dynamic indexing is supported, although of course one cannot take derivatives with respect
to the actual index values, since they are discrete. This means the index values cannot be
sampled by HMC.

• One can take derivatives with respect to nodes assigned CAR priors, so HMC sampling can
be performed on variables assigned a CAR prior(i.e., dcar_normal and dcar_proper).

• One can take derivatives with respect to the parameters of dcat, dconstraint, and
dinterval. Hence HMC sampling is supported for parameters of nodes that have dcat,
dconstraint, and dinterval dependencies. (However, the nodes that follow one of these
distributions are discrete, so derivatives with respect to those nodes themselves are not
supported, and HMC cannot sample those nodes.)

7.11. SAMPLERS PROVIDED WITH NIMBLE 95

• Truncated distributions can be used, but one cannot take derivatives with respect to their
parameters or the nodes themselves. This means that HMC sampling cannot be performed
on nodes that have truncated nodes as dependencies.

More information is available from the help pages, e.g. help(nimbleHMC), help(buildHMC),
help(configureHMC), or help(addHMC).

7.11.2.1 HMC example

Here we will configure and build an MCMC to use the NUTS HMC sampler on a GLMM example.
In this case we’ll use HMC sampling for the whole model, i.e., all parameters and latent states.

We’ll use a Poisson Generalized Linear Mixed Model (GLMM) as a simple example model for
HMC (and also for Laplace approximation in 16.1). There will be 10 groups (indexed by i) of
5 observations (indexed by j) each. Each observation has a covariate, X, and each group has a
random effect ran_eff. Here is the model code:
model_code <- nimbleCode({

priors
intercept ~ dnorm(0, sd = 100)
beta ~ dnorm(0, sd = 100)
sigma ~ dunif(0, 10)
random effects and data
for(i in 1:10) {
random effects
ran_eff[i] ~ dnorm(0, sd = sigma)
for(j in 1:5) {

data
y[i,j] ~ dpois(exp(intercept + beta*X[i,j] + ran_eff[i]))

}
}

})

We’ll simulate some values for X.
set.seed(123)
X <- matrix(rnorm(50), nrow = 10)

In order to allow an algorithm to use AD for a specific model, that model must be created with
buildDerivs = TRUE. (Note that if you use the one-step method nimbleHMC described above, then
you do not need to build the model yourself and so you do not need to provide this buildDerivs
option.)
inits <- list(intercept = 0, beta = 0.2, sigma = 0.5)
model <- nimbleModel(model_code, constants = list(X = X), inits = inits,

calculate = FALSE, buildDerivs = TRUE) # Here is the argument needed for AD.

To finish setting up the example we need to put data values into the model. We could have
provided data in the call to nimbleModel, but instead we will simulate them using the model itself.
Specifically, we will set parameter values, simulate data values, and then set those as the data to
use.

96 CHAPTER 7. MCMC

model$calculate() # This will return NA because the model is not fully initialized.

[1] NA
model$simulate(model$getDependencies('ran_eff'))
model$calculate() # Now the model is fully initialized: all nodes have valid values.

[1] -80.74344
model$setData('y') # Now the model has y marked as data, with values from simulation.

Finally, we will make a compiled version of the model.
Cmodel <- compileNimble(model)

Now we will build an HMC algorithm for the parameters and random effects in the model.
library(nimbleHMC)
HMC <- buildHMC(model)

===== Monitors =====
thin = 1: beta, intercept, sigma
===== Samplers =====
NUTS sampler (1)
- intercept, beta, sigma, ran_eff[1], ran_eff[2], ran_eff[3], ran_eff[4], ran_eff[5], ran_eff[6], ran_eff[7], ran_eff[8], ran_eff[9], ran_eff[10]
CHMC <- compileNimble(HMC, project = model)
The compiled HMC will use the compiled model.
samples <- runMCMC(CHMC, niter = 1000, nburnin = 500) # short run for illustration

[Note] NUTS sampler (nodes: intercept, beta, sigma, ran_eff[1], ran_eff[2], ran_eff[3], ran_eff[4], ran_eff[5], ran_eff[6], r...) is using 500 warmup iterations.
Since `warmupMode` is 'default' and `nburnin` > 0,
the number of warmup iterations is equal to `nburnin`.
The burnin samples will be discarded, and all samples returned will be post-warmup.

We will not investigate results in detail, but here is a summary to see that reasonable results were
generated.
summary(coda::as.mcmc(samples))

##
Iterations = 1:500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 500
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
beta 0.1790 0.1438 0.006432 0.008174
intercept -0.2524 0.4463 0.019960 0.056677

7.11. SAMPLERS PROVIDED WITH NIMBLE 97

sigma 0.7912 0.4091 0.018296 0.051351
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
beta -0.1299 0.08311 0.1873 0.280133 0.4415
intercept -1.6013 -0.42914 -0.1681 -0.002989 0.3520
sigma 0.2935 0.53669 0.6886 0.943581 2.0846

7.11.2.2 Automatic parameter transformation

In the example above, sigma is a parameter that must be non-negative. HMC works only on
unconstrained parameter spaces. NIMBLE’s HMC functionality automatically transforms any
constrained parameters to be in an unconstrained parameter space, runs the MCMC, and back-
transforms to the original space before providing the MCMC samples. The details of the parameter
transformation system can be found in Section 16.8.

7.11.3 Particle filter samplers
The nimbleSMC package provides samplers that perform particle MCMC, primarily intended for
sampling top-level parameters in state-space or hidden Markov models of time-series data. This
sampler is described in Section 8.1.2.

7.11.4 Customized log-likelihood evaluations: RW_llFunction sampler
Sometimes it is useful to control the log-likelihood calculations used for an MCMC updater instead
of simply using the model. For example, one could use a sampler with a log-likelihood that analyt-
ically (or numerically) integrates over latent model nodes. Or one could use a sampler with a log-
likelihood that comes from a stochastic approximation such as a particle filter (see below), allowing
composition of a particle MCMC (PMCMC) algorithm (Andrieu et al., 2010). The RW_llFunction
sampler handles this by using a Metropolis-Hastings algorithm with a normal proposal distribution
and a user-provided log-likelihood function. To allow compiled execution, the log-likelihood func-
tion must be provided as a specialized instance of a nimbleFunction. The log-likelihood function
may use the same model as the MCMC as a setup argument (as does the example below), but
if so the state of the model should be unchanged during execution of the function (or you must
understand the implications otherwise).

The RW_llFunction sampler can be customized using the control list argument to set the initial
proposal distribution scale and the adaptive properties for the Metropolis-Hastings sampling. In
addition, the control list argument must contain a named llFunction element. This is the
specialized nimbleFunction that calculates the log-likelihood; it must accept no arguments and
return a scalar double number. The return value must be the total log-likelihood of all stochastic
dependents of the target nodes – and, if includesTarget = TRUE, of the target node(s) themselves
– or whatever surrogate is being used for the total log-likelihood. This is a required control list
element with no default. See help(samplers) for details.

Here is a complete example:
code <- nimbleCode({

p ~ dunif(0, 1)

98 CHAPTER 7. MCMC

y ~ dbin(p, n)
})

Rmodel <- nimbleModel(code, data = list(y=3), inits = list(p=0.5, n=10))

llFun <- nimbleFunction(
setup = function(model) { },
run = function() {

y <- model$y
p <- model$p
n <- model$n
ll <- lfactorial(n) - lfactorial(y) - lfactorial(n-y) +

y * log(p) + (n-y) * log(1-p)
returnType(double())
return(ll[1])

}
)

RllFun <- llFun(Rmodel)

mcmcConf <- configureMCMC(Rmodel, nodes = NULL)

mcmcConf$addSampler(target = "p", type = "RW_llFunction",
control = list(llFunction = RllFun, includesTarget = FALSE))

Rmcmc <- buildMCMC(mcmcConf)

Note that we need to return ll[1] and not just ll because there are no scalar variables in compiled
models. Hence y and other variables, and therefore ll, are of dimension 1 (i.e., vectors / one-
dimensional arrays), so we need to specify the first element in order to have the return type be a
scalar.

7.12 Detailed MCMC example: litters
Here is a detailed example of specifying, building, compiling, and running two MCMC algorithms.
We use the litters example from the BUGS examples.
###############################
model configuration
###############################

define our model using BUGS syntax
litters_code <- nimbleCode({

for (i in 1:G) {
a[i] ~ dgamma(1, .001)
b[i] ~ dgamma(1, .001)
for (j in 1:N) {

r[i,j] ~ dbin(p[i,j], n[i,j])

7.12. DETAILED MCMC EXAMPLE: LITTERS 99

p[i,j] ~ dbeta(a[i], b[i])
}
mu[i] <- a[i] / (a[i] + b[i])
theta[i] <- 1 / (a[i] + b[i])

}
})

list of fixed constants
constants <- list(G = 2,

N = 16,
n = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 11, 8, 10, 13,

10, 12, 9, 10, 9, 10, 5, 9, 9, 13, 7, 5, 10, 7, 6,
10, 10, 10, 7), nrow = 2))

list specifying model data
data <- list(r = matrix(c(13, 12, 12, 11, 9, 10, 9, 9, 8, 10, 8, 9, 12, 9,

11, 8, 9, 8, 9, 4, 8, 7, 11, 4, 4, 5 , 5, 3, 7, 3,
7, 0), nrow = 2))

list specifying initial values
inits <- list(a = c(1, 1),

b = c(1, 1),
p = matrix(0.5, nrow = 2, ncol = 16),
mu = c(.5, .5),
theta = c(.5, .5))

build the R model object
Rmodel <- nimbleModel(litters_code,

constants = constants,
data = data,
inits = inits)

###
MCMC configuration and building
###

generate the default MCMC configuration;
only wish to monitor the derived quantity "mu"
mcmcConf <- configureMCMC(Rmodel, monitors = "mu")

check the samplers assigned by default MCMC configuration
mcmcConf$printSamplers()

double-check our monitors, and thinning interval
mcmcConf$printMonitors()

100 CHAPTER 7. MCMC

build the executable R MCMC function
mcmc <- buildMCMC(mcmcConf)

let's try another MCMC, as well,
this time using the crossLevel sampler for top-level nodes

generate an empty MCMC configuration
we need a new copy of the model to avoid compilation errors
Rmodel2 <- Rmodel$newModel()
mcmcConf_CL <- configureMCMC(Rmodel2, nodes = NULL, monitors = "mu")

add two crossLevel samplers
mcmcConf_CL$addSampler(target = c("a[1]", "b[1]"), type = "crossLevel")
mcmcConf_CL$addSampler(target = c("a[2]", "b[2]"), type = "crossLevel")

let's check the samplers
mcmcConf_CL$printSamplers()

build this second executable R MCMC function
mcmc_CL <- buildMCMC(mcmcConf_CL)

###################################
compile to C++, and run
###################################

compile the two copies of the model
Cmodel <- compileNimble(Rmodel)
Cmodel2 <- compileNimble(Rmodel2)

compile both MCMC algorithms, in the same
project as the R model object
NOTE: at this time, we recommend compiling ALL
executable MCMC functions together
Cmcmc <- compileNimble(mcmc, project = Rmodel)
Cmcmc_CL <- compileNimble(mcmc_CL, project = Rmodel2)

run the default MCMC function,
and example the mean of mu[1]
Cmcmc$run(1000)
cSamplesMatrix <- as.matrix(Cmcmc$mvSamples) # alternative: as.list
mean(cSamplesMatrix[, "mu[1]"])

run the crossLevel MCMC function,
and examine the mean of mu[1]
Cmcmc_CL$run(1000)
cSamplesMatrix_CL <- as.matrix(Cmcmc_CL$mvSamples)

7.13. COMPARING DIFFERENT MCMCS WITH MCMCSUITE AND COMPAREMCMCS101

mean(cSamplesMatrix_CL[, "mu[1]"])

###################################
run multiple MCMC chains
###################################

run 3 chains of the crossLevel MCMC
samplesList <- runMCMC(Cmcmc_CL, niter=1000, nchains=3)

lapply(samplesList, dim)

7.13 Comparing different MCMCs with MCMCsuite and com-
pareMCMCs

Please see the compareMCMCs package for the features previously provided by MCMCsuite and
compareMCMCs in NIMBLE (until version 0.8.0). The compareMCMCs package provides tools to
automatically run MCMC in nimble (including multiple sampler configurations), WinBUGS, Open-
BUGS, JAGS, Stan, or any other engine for which you provide a simple common interface. The
package makes it easy to manage comparison metrics and generate html pages with comparison
figures.

7.14 Running MCMC chains in parallel
It is possible to run multiple chains in parallel using standard R parallelization packages such
as parallel, foreach, and future. However, you must create separate copies of all model and
MCMC objects using nimbleModel, buildMCMC, compileNimble, etc. This is because NIMBLE
uses Reference Classes and R6 classes, so copying such objects simply creates a new variable name
that refers to the original object.

Thus, in your parallel loop or lapply-style statement, you should run nimbleModel and all subse-
quent calls to create and compile the model and MCMC algorithm within the parallelized block of
code, once for each MCMC chain being run in parallel.

For a worked example, please see the parallelization example on our webpage.

https://r-nimble.org/nimbleExamples/parallelizing_NIMBLE.html

102 CHAPTER 7. MCMC

Chapter 8

Particle Filters, PMCMC, MCEM,
Laplace approximation and
quadrature

The NIMBLE algorithm library includes a suite of sequential Monte Carlo (particle filtering) algo-
rithms (particle filters, PMCMC, iterated particle filter, and ensemble Kalman filter), Monte Carlo
expectation maximization (MCEM) for maximum likelihood estimation, Laplace approximation
and adaptive Gauss-Hermite quadrature, and k-fold cross-validation.

8.1 Particle filters / sequential Monte Carlo and iterated filtering
As of Version 0.10.0 of NIMBLE, all of NIMBLE’s sequential Monte Carlo/particle filtering func-
tionality lives in the nimbleSMC package, described in Michaud et al. (2021). Please load this
package before trying to use these algorithms.

8.1.1 Filtering algorithms
NIMBLE includes algorithms for four different types of sequential Monte Carlo (also known as
particle filters), which can be used to sample from the latent states and approximate the log
likelihood of a state-space model. These include the bootstrap filter, the auxiliary particle filter,
the Liu-West filter, and the ensemble Kalman filter. The iterated filtering version 2 (IF2) is a related
method for maximum-likelihood estimation. Each of these is built with the eponymous functions
buildBootstrapFilter, buildAuxiliaryFilter, buildLiuWestFilter, buildEnsembleKF, and
buildIteratedFilter2. Each method requires setup arguments model and nodes; the latter
should be a character vector specifying latent model nodes. In addition, each method can be
customized using a control list argument. Details on the control options and specifics of the
algorithms can be found in the help pages for the functions.

Once built, each filter can be run by specifying the number of particles. Each filter has a modelVal-
ues object named mvEWSamples that is populated with equally-weighted samples from the posterior
distribution of the latent states (and in the case of the Liu-West filter, the posterior distribution
of the top level parameters as well) as the filter is run. The bootstrap, auxiliary, and Liu-West
filters, as well as the IF2 method, also have another modelValues object, mvWSamples. This has

103

104CHAPTER 8. PARTICLE FILTERS, PMCMC, MCEM, LAPLACE APPROXIMATION AND QUADRATURE

unequally-weighted samples from the posterior distribution of the latent states, along with weights
for each particle. In addition, the bootstrap and auxiliary particle filters return estimates of the
log-likelihood of the given state-space model.

We first create a linear state-space model to use as an example for our particle filter algorithms.
Building a simple linear state-space model.
x is latent space, y is observed data
timeModelCode <- nimbleCode({

x[1] ~ dnorm(mu_0, 1)
y[1] ~ dnorm(x[1], 1)
for(i in 2:t){
x[i] ~ dnorm(x[i-1] * a + b, 1)
y[i] ~ dnorm(x[i] * c, 1)

}

a ~ dunif(0, 1)
b ~ dnorm(0, 1)
c ~ dnorm(1,1)
mu_0 ~ dnorm(0, 1)

})

simulate some data
t <- 25; mu_0 <- 1
x <- rnorm(1 ,mu_0, 1)
y <- rnorm(1, x, 1)
a <- 0.5; b <- 1; c <- 1
for(i in 2:t){

x[i] <- rnorm(1, x[i-1] * a + b, 1)
y[i] <- rnorm(1, x[i] * c, 1)

}

build the model
rTimeModel <- nimbleModel(timeModelCode, constants = list(t = t),

data <- list(y = y), check = FALSE)

Set parameter values and compile the model
rTimeModel$a <- 0.5
rTimeModel$b <- 1
rTimeModel$c <- 1
rTimeModel$mu_0 <- 1

cTimeModel <- compileNimble(rTimeModel)

8.1.1.1 Bootstrap filter

Here is an example of building and running the bootstrap filter.

8.1. PARTICLE FILTERS / SEQUENTIAL MONTE CARLO AND ITERATED FILTERING105

Build bootstrap filter
rBootF <- buildBootstrapFilter(rTimeModel, "x",

control = list(thresh = 0.8, saveAll = TRUE,
smoothing = FALSE))

Compile filter
cBootF <- compileNimble(rBootF,project = rTimeModel)
Set number of particles
parNum <- 5000
Run bootstrap filter, which returns estimate of model log-likelihood
bootLLEst <- cBootF$run(parNum)
The bootstrap filter can also return an estimate of the effective
sample size (ESS) at each time point
bootESS <- cBootF$returnESS()

8.1.1.2 Auxiliary particle filter

Next, we provide an example of building and running the auxiliary particle filter. Note that a filter
cannot be built on a model that already has a filter specialized to it, so we create a new copy of
our state space model first.
Copy our state-space model for use with the auxiliary filter
auxTimeModel <- rTimeModel$newModel(replicate = TRUE)
compileNimble(auxTimeModel)
Build auxiliary filter
rAuxF <- buildAuxiliaryFilter(auxTimeModel, "x",

control = list(thresh = 0.5, saveAll = TRUE))
Compile filter
cAuxF <- compileNimble(rAuxF,project = auxTimeModel)
Run auxiliary filter, which returns estimate of model log-likelihood
auxLLEst <- cAuxF$run(parNum)
The auxiliary filter can also return an estimate of the effective
sample size (ESS) at each time point
auxESS <- cAuxF$returnESS()

8.1.1.3 Liu and West filter

Now we give an example of building and running the Liu and West filter, which can sample from
the posterior distribution of top-level parameters as well as latent states. Note that the Liu-West
filter ofen performs poorly and is provided primarily for didactic purposes. The Liu and West filter
accepts an additional params argument, specifying the top-level parameters to be sampled.
Copy model
LWTimeModel <- rTimeModel$newModel(replicate = TRUE)
compileNimble(LWTimeModel)
Build Liu-West filter, also
specifying which top level parameters to estimate
rLWF <- buildLiuWestFilter(LWTimeModel, "x", params = c("a", "b", "c"),

control = list(saveAll = FALSE))

106CHAPTER 8. PARTICLE FILTERS, PMCMC, MCEM, LAPLACE APPROXIMATION AND QUADRATURE

Warning in buildLiuWestFilter(LWTimeModel, "x", params = c("a", "b", "c"), :
The Liu-West filter ofen performs poorly and is provided primarily for didactic
purposes.
Compile filter
cLWF <- compileNimble(rLWF,project = LWTimeModel)
Run Liu-West filter
cLWF$run(parNum)

8.1.1.4 Ensemble Kalman filter

Next we give an example of building and running the ensemble Kalman filter, which can sample
from the posterior distribution of latent states.
Copy model
ENKFTimeModel <- rTimeModel$newModel(replicate = TRUE)
compileNimble(ENKFTimeModel)
Build and compile ensemble Kalman filter
rENKF <- buildEnsembleKF(ENKFTimeModel, "x",

control = list(saveAll = FALSE))
cENKF <- compileNimble(rENKF,project = ENKFTimeModel)
Run ensemble Kalman filter
cENKF$run(parNum)

Once each filter has been run, we can extract samples from the posterior distribution of our latent
states as follows:
Equally-weighted samples (available from all filters)
bootEWSamp <- as.matrix(cBootF$mvEWSamples) # alternative: as.list
auxEWSamp <- as.matrix(cAuxF$mvEWSamples)
LWFEWSamp <- as.matrix(cLWF$mvEWSamples)
ENKFEWSamp <- as.matrix(cENKF$mvEWSamples)

Unequally-weighted samples, along with weights (available
from bootstrap, auxiliary, and Liu and West filters)
bootWSamp <- as.matrix(cBootF$mvWSamples, "x")
bootWts <- as.matrix(cBootF$mvWSamples, "wts")
auxWSamp <- as.matrix(xAuxF$mvWSamples, "x")
auxWts <- as.matrix(cAuxF$mvWSamples, "wts")

Liu and West filter also returns samples
from posterior distribution of top-level parameters:
aEWSamp <- as.matrix(cLWF$mvEWSamples, "a")

8.1.1.5 Iterated filtering 2 (IF2)

The IF2 method (Ionides et al., 2015) accomplishes maximum likelihood estimation using a scheme
wherein both latent states and parameters are represented by particles that are weighted and re-
sampled during the iterations. Iterations include perturbations to the parameter particles following
a schedule of decreasing magnitude to yield convergence to the MLE.

8.1. PARTICLE FILTERS / SEQUENTIAL MONTE CARLO AND ITERATED FILTERING107

Here we apply IF2 to Nile River flow data, specifying a changepoint in the year the Aswan Dam
was constructed, as the dam altered river flows.
library(FKF)

flowCode <- nimbleCode({
for(t in 1:n)

y[t] ~ dnorm(x[t], sd = sigmaMeasurements)
x[1] ~ dnorm(x0, sd = sigmaInnovations)
for(t in 2:n)

x[t] ~ dnorm((t-1==28)*meanShift1899 + x[t-1], sd = sigmaInnovations)
logSigmaInnovations ~ dnorm(0, sd = 100)
logSigmaMeasurements ~ dnorm(0, sd = 100)
sigmaInnovations <- exp(logSigmaInnovations)
sigmaMeasurements <- exp(logSigmaMeasurements)
x0 ~ dnorm(1120, var = 100)
meanShift1899 ~ dnorm(0, sd = 100)

})

flowModel <- nimbleModel(flowCode, data = list(y = Nile),
constants = list(n = length(Nile)),
inits = list(logSigmaInnovations = log(sd(Nile)),

logSigmaMeasurements = log(sd(Nile)),
meanShift1899 = -100))

Note that the prior distributions for the parameters are not used by IF2, except possibly to obtain
boundaries of valid parameter values (not the case here).

Now we build the filter, specifying user-controlled standard deviations (in this case the same as
the perturbation sigma values) for use in generating the initial particles for the parameters via the
control list.
filter <- buildIteratedFilter2(model = flowModel,

nodes = 'x',
params = c('logSigmaInnovations',

'logSigmaMeasurements',
'meanShift1899'),

baselineNode = 'x0',
control = list(sigma = c(0.1, 0.1, 5),

initParamSigma = c(0.1, 0.1, 5)))
cFlowModel <- compileNimble(flowModel)
cFilter <- compileNimble(filter, project = flowModel)

We now run the algorithm with 1000 particles for 100 iterations with the schedule parameter equal
to 0.2.

In addition to the estimates, we can extract the values of the log-likelihood, the estimates and the
standard deviation of the parameter particles as they evolve over the iterations, in order to assess
convergence.

108CHAPTER 8. PARTICLE FILTERS, PMCMC, MCEM, LAPLACE APPROXIMATION AND QUADRATURE

set.seed(1)
est <- cFilter$run(m = 1000, niter = 100, alpha = 0.2)

cFilter$estimates[95:100,] ## Last 5 iterations of parameter values

[,1] [,2] [,3]
[1,] 0.013306153 4.822613 -269.7837
[2,] -0.013961938 4.857470 -271.4965
[3,] 0.002183997 4.850475 -271.1919
[4,] 0.015598044 4.851961 -272.3889
[5,] -0.005571944 4.842719 -272.6390
[6,] 0.042982317 4.837347 -271.1800
cFilter$logLik[90:100] ## Last 5 iterations of log likelihood values

[1] -627.0497 -626.9570 -626.9856 -626.9954 -626.7448 -626.7521 -626.8472
[8] -626.7398 -626.9869 -627.1354 -626.6648

Comparing to use of the the Kalman Filter from the FKF package, we see the log-likelihood is
fairly similar:
dtpred <- matrix(0, ncol = length(Nile))
dtpred[28] <- est[3]
ct <- matrix(0)
Zt <- Tt <- matrix(1)

fkfResult <- fkf(HHt = matrix(exp(2*est[1])),
GGt = matrix(exp(2*est[2])),
yt = rbind(Nile),
a0 = 1120,
P0 = matrix(100),
dt = dtpred, ct = ct, Zt = Zt, Tt = Tt)

fkfResult$logLik

[1] -626.5521

8.1.2 Particle MCMC (PMCMC)

Particle MCMC (PMCMC) is a method that uses MCMC for top-level model parameters and uses
a particle filter to approximate the time-series likelihood for use in determining MCMC acceptance
probabilities (Andrieu et al., 2010). NIMBLE implements PMCMC by providing random-walk
Metropolis-Hastings samplers for model parameters that make use of particle filters in this way.
These samplers can use NIMBLE’s bootstrap filter or auxiliary particle filter, or they can use a
user-defined filter. Whichever filter is specified will be used to obtain estimates of the likelihood
of the state-space model (marginalizing over the latent states), which is used for calculation of the
Metropolis-Hastings acceptance probability. The RW_PF sampler uses a univariate normal proposal
distribution, and can be used to sample scalar top-level parameters. The RW_PF_block sampler
uses a multivariate normal proposal distribution and can be used to jointly sample vectors of top-
level parameters. The PMCMC samplers can be specified with a call to addSampler with type

8.1. PARTICLE FILTERS / SEQUENTIAL MONTE CARLO AND ITERATED FILTERING109

= "RW_PF" or type = "RW_PF_block", a syntax similar to the other MCMC samplers listed in
Section 7.11.

The RW_PF sampler and RW_PF_block sampler can be customized using the control list argument
to set the adaptive properties of the sampler and options for the particle filter algorithm to be
used. In addition, providing pfOptimizeNparticles=TRUE in the control list will use an exper-
imental algorithm to estimate the optimal number of particles to use in the particle filter. See
help(samplers) for details. The MCMC configuration for the timeModel in the previous section
will serve as an example for the use of our PMCMC sampler. Here we use the identity matrix as
our proposal covariance matrix.
timeConf <- configureMCMC(rTimeModel, nodes = NULL) # empty MCMC configuration

Add random walk PMCMC sampler with particle number optimization.
timeConf$addSampler(target = c("a", "b", "c", "mu_0"), type = "RW_PF_block",

control = list(propCov= diag(4), adaptScaleOnly = FALSE,
latents = "x", pfOptimizeNparticles = TRUE))

The type = "RW_PF" and type = "RW_PF*block" samplers default to using a bootstrap filter.
The adapatation control parameters adaptive, adaptInterval, and adaptScaleOnly work in the
same way as for an RW and RW*block samplers. However, it is not clear if the same approach
to adaptation works well for PMCMC, so one should consider turning off adaptation and using a
well-chosen proposal covariance.

It is also possible that more efficient results can be obtained by using a custom filtering algorithm.
Choice of filtering algorithm can be controlled by the pfType control list entry. The pfType
entry can be set either to 'bootstrap' (the default), 'auxiliary', or the name of a user-defined
nimbleFunction that returns a likelihood approximation.

Any user-defined filtering nimbleFunction named in the pfType control list entry must satsify the
following:

1. The nimbleFunction must be the result of a call to nimbleFunction().

2. The nimbleFunction must have setup code that accepts the following (and only the following)
arguments:

• model, the NIMBLE model object that the MCMC algorithm is defined on.
• latents, a character vector specifying the latent model nodes over which the particle

filter will stochastically integrate over to estimate the log-likelihood function.
• control, an R list object. Note that the control list can be used to pass in any

additional information or arguments that the custom filter may require.

3. The nimbleFunction must have a run function that accepts a single integer arugment (the
number of particles to use), and returns a scalar double (the log-likelihood estimate).

4. The nimbleFunction must define, in setup code, a modelValues object named mvEWSamples
that is used to contain equally weighted samples of the latent states (that is, the latents
argument to the setup function). Each time the run() method of the nimbleFunction is
called with number of particles m, the mvEWSamples modelValues object should be resized to
be of size m via a call to resize(mvEWSamples, m).

110CHAPTER 8. PARTICLE FILTERS, PMCMC, MCEM, LAPLACE APPROXIMATION AND QUADRATURE

8.2 Monte Carlo Expectation Maximization (MCEM)
Suppose we have a model with missing data – or latent variables or random effects, which can
be viewed as missing data – and we would like to maximize the marginal likelihood of the model,
integrating over the missing data. A brute-force method for doing this is MCEM. This is an EM
algorithm in which the missing data are simulated via Monte Carlo (often MCMC, when the full
conditional distributions cannot be directly sampled from) at each iteration. MCEM can be slow
but is also a general workhorse method that is applicable to a wide range of problems.

buildMCEM provides an (optionally) ascent-based MCEM algorithm based on Caffo et al. (2005).
buildMCEM was re-written for nimble version 1.2.0 and is not compatible with previous versions.
For the E (expectation) step, buildMCEM uses an MCMC for the latent states given the data and
current parameters. For the M (maximization) step, buildMCEM uses optim.

The ascent-based feature uses an estimate of the standard error of the move in one iteration to
determine if that move is clearly uphill or is swamped by noise due to using a Monte Carlo (MCMC)
sample. In the latter case, the MCMC sample size is increased until there is a clear uphill move. In
a similar manner, convergence is determined based on whether the uphill move is confidently less
than a tolerance level taken to indicate that the algorithm is at the MLE. The associated tuning
parameters, along with details on control over each step, are described at help(buildMCEM).

The maximization part of each MCEM iteration will use gradients from automatic differentiation if
they are supported for the model and buildDerivs=TRUE when nimbleModel was called to create
the model. If any parameters have constraints on valid values (e.g. greater than 0), by default a
parameter transformation will be set up (see help(parameterTransform)) and optimization will
be done in the transformed (unconstrained) space.

Additionally, the MCEM algorithm can provide an estimate of the asymptotic covariance matrix
of the parameters. See 8.2.1.

We will revisit the pump example to illustrate the use of NIMBLE’s MCEM algorithm.
pump <- nimbleModel(code = pumpCode, name = "pump", constants = pumpConsts,

data = pumpData, inits = pumpInits, check = FALSE,
buildDerivs=TRUE)

Cpump <- compileNimble(pump)

build an MCEM algorithm with ascent-based convergence criterion
pumpMCEM <- buildMCEM(model = pump,

latentNodes = "theta")
The latentNodes="theta" would be determined by default but is shown for clarity.
CpumpMCEM <- compileNimble(pumpMCEM, project=pump)

The first argument to buildMCEM, model, is a NIMBLE model. At the moment, the model provided
cannot be part of another MCMC sampler.
pumpMLE <- CpumpMCEM$findMLE(initM = 1000)

[Note] Iteration Number: 1.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:

8.2. MONTE CARLO EXPECTATION MAXIMIZATION (MCEM) 111

0.818983
1.14746
[Note] Convergence Criterion: 0.684673.
[Note] Iteration Number: 2.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.818793
1.21849
[Note] Convergence Criterion: 0.0209188.
[Note] Iteration Number: 3.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.819104
1.24505
[Note] Convergence Criterion: 0.00392522.
[Note] Iteration Number: 4.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.838402
1.29963
[Note] Convergence Criterion: 0.00657192.
[Note] Iteration Number: 5.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.821287
1.26525
[Note] Convergence Criterion: 0.00361366.
[Note] Iteration Number: 6.
[Note] Current number of MCMC iterations: 1000.
[Note] Parameter Estimates:
0.835258
1.29028
[Note] Convergence Criterion: 0.00249731.
Monte Carlo error too big: increasing MCMC sample size.
[Note] Iteration Number: 7.
[Note] Current number of MCMC iterations: 1167.
[Note] Parameter Estimates:
0.829192
1.28844
[Note] Convergence Criterion: 0.000914589.
pumpMLE$par

[1] 0.8291919 1.2884366

For this model, we can check the result by analytically integrating over the latent nodes (possible
for this model but often not feasible), which gives maximum likelihood estimates of ̂𝛼 = 0.823 and

̂𝛽 = 1.261. Thus the MCEM seems to do pretty well, though tightening the convergence criteria
may be warranted in actual usage.

112CHAPTER 8. PARTICLE FILTERS, PMCMC, MCEM, LAPLACE APPROXIMATION AND QUADRATURE

For more complicated models, it is worth exploring the tuning parameters (see help(buildMCEM)).
MCEM inherits from the EM algorithm the difficulty that the convergence path can be slow,
depending on the model. This can depend on the parameterization, such as whether random
effects are centered or uncentered, so it can also be worth exploring different ways to write a model.

8.2.1 Estimating the asymptotic covariance From MCEM
The vcov method of an MCEM nimbleFunction calculates a Monte Carlo estimate of the asymptotic
covariance of the parameters based on the Hessian matrix at the MLE, using the method of Louis
(1982). Arguments to this method allow control over whether to generate a new MCMC sample
for this purpose and other details.

Continuing the above example, here is the covariance matrix:
pumpCov <- CpumpMCEM$vcov(pumpMLE$par)
pumpCov

[,1] [,2]
[1,] 0.1295558 0.2263726
[2,] 0.2263726 0.6758945

8.3 Laplace approximation and adaptive Gauss-Hermite quadra-
ture

Many hierarchical models include continuous random effects that must be integrated over to ob-
tain the (marginal) likelihood of the parameters given the data. Laplace approximation and adap-
tive Gauss-Hermite quadrature (AGHQ) are often accurate and fast approximations for doing so.
Laplace is simply AGHQ with a single quadrature point (the conditional mode of the random
effects).

NIMBLE provides these algorithms via buildLaplace and buildAGHQuad (the former simply calls
the latter), which take advantage of the automatic differentiation features introduced in version
1.0.0. Laplace approximation is introduced in section 16.2, while details for both can be found by
help(buildLaplace).

Chapter 9

Spatial models

NIMBLE supports two variations of conditional autoregressive (CAR) model structures: the im-
proper intrinsic Gaussian CAR (ICAR) model, and a proper Gaussian CAR model. This includes
distributions to represent these spatially-dependent model structures in a BUGS model, as well as
specialized MCMC samplers for these distributions.

9.1 Intrinsic Gaussian CAR model: dcar_normal
The intrinsic Gaussian conditional autoregressive (ICAR) model used to model dependence of block-
level values (e.g., spatial areas or temporal blocks) is implemented in NIMBLE as the dcar_normal
distribution. Additional details for using this distribution are available using help('CAR-Normal').

ICAR models are improper priors for random fields (e.g., temporal or spatial processes). The
prior is a joint prior across a collection of latent process values. For more technical details on CAR
models, including higher-order CAR models, please see Rue and Held (2005), Banerjee et al. (2015),
and Paciorek (2009). Since the distribution is improper it should not be used as the distribution
for data values, but rather to specify a prior for an unknown process. As discussed in the references
above, the distribution can be seen to be a proper density in a reduced dimension subspace; thus
the impropriety only holds on one or more linear combinations of the latent process values.

In addition to our focus here on CAR modeling for spatial data, the ICAR model can also be used
in other contexts, such as for temporal data in a discrete time context.

9.1.1 Specification and density

NIMBLE uses the same parameterization as WinBUGS / GeoBUGS for the dcar_normal distribu-
tion, providing compatibility with existing WinBUGS code. NIMBLE also provides the WinBUGS
name car.normal as an alias.

9.1.1.1 Specification

The dcar_normal distribution is specified for a set of N spatially dependent regions as:

x[1:N] ~ dcar_normal(adj, weights, num, tau, c, zero_mean)

113

114 CHAPTER 9. SPATIAL MODELS

The adj, weights and num parameters define the adjacency structure and associated weights of
the spatially-dependent field. See help('CAR-Normal') for details of these parameters. When
specifying a CAR distribution, these parameters must have constant values. They do not necessarily
have to be specified as constants when creating a model object using nimbleModel, but they
should be defined in a static way: as right-hand-side only variables with initial values provided as
constants, data or inits, or using fixed numerical deterministic declarations. Each of these two
approaches for specifying values are shown in the example.

The adjacency structure defined by adj and the associated weights must be symmetric. That is,
if region 𝑖 is neighbor of region 𝑗, then region 𝑗 must also be a neighbor of region 𝑖. Further, the
weights associated with these reciprocating relationships must be equal. NIMBLE performs a check
of these symmetries and will issue an error message if asymmetry is detected.

The scalar precision tau may be treated as an unknown model parameter and itself assigned a
prior distribution. Care should be taken in selecting a prior distribution for tau, and WinBUGS
suggests that users be prepared to carry out a sensitivity analysis for this choice.

When specifying a higher-order CAR process, the number of constraints c can be explicitly provided
in the model specification. This would be the case, for example, when specifying a thin-plate spline
(second-order) CAR model, for which c should be 2 for a one-dimensional process and 3 for a two-
dimensional (e.g., spatial) process, as discussed in Rue and Held (2005) and Paciorek (2009). If c
is omitted, NIMBLE will calculate c as the number of disjoint groups of regions in the adjacency
structure, which implicitly assumes a first-order CAR process for each group.

By default there is no zero-mean constraint imposed on the CAR process, and thus the mean is
implicit within the CAR process values, with an implicit improper flat prior on the mean. To
avoid non-identifiability, one should not include an additional parameter for the mean (e.g., do
not include an intercept term in a simple CAR model with first-order neighborhood structure).
When there are disjoint groups of regions and the constraint is not imposed, there is an implicit
distinct improper flat prior on the mean for each group, and it would not make sense to impose
the constraint since the constraint holds across all regions. Similarly, if one sets up a neighborhood
structure for higher-order CAR models, it would not make sense to impose the zero-mean constraint
as that would account for only one of the eigenvalues that are zero. Imposing this constraint (by
specifying the parameter zero_mean = 1) allows users to model the process mean separately, and
hence a separate intercept term should be included in the model.

NIMBLE provides a convenience function as.carAdjacency for converting other representations of
the adjacency information into the required adj, weights, num format. This function can convert:

• A symmetric adjacency matrix of weights (with diagonal elements equal to zero), using
as.carAdjacency(weightMatrix)

• Two length-N lists with numeric vector elements giving the neighboring indices and associated
weights for each region, using as.carAdjacency(neighborList, weightList)

These conversions should be done in R, and the resulting adj, weights, num vectors can be passed
as constants into nimbleModel.

9.1.1.2 Density

For process values 𝑥 = (𝑥1, … , 𝑥𝑁) and precision 𝜏 , the improper CAR density is given as:

9.1. INTRINSIC GAUSSIAN CAR MODEL: DCAR_NORMAL 115

𝑝(𝑥|𝜏) ∝ 𝜏 (𝑁−𝑐)/2 𝑒− 𝜏
2 ∑𝑖≠𝑗 𝑤𝑖𝑗 (𝑥𝑖−𝑥𝑗)2

where the summation over all (𝑖, 𝑗) pairs, with the weight between regions 𝑖 and 𝑗 given by 𝑤𝑖𝑗, is
equivalent to summing over all pairs for which region 𝑖 is a neighbor of region 𝑗. Note that the
value of 𝑐 modifies the power to which the precision is raised, accounting for the impropriety of the
density based on the number of zero eigenvalues in the implicit precision matrix for 𝑥.

For the purposes of MCMC sampling the individual CAR process values, the resulting conditional
prior of region 𝑖 is:

𝑝(𝑥𝑖|𝑥−𝑖, 𝜏) ∼ N (1
𝑤𝑖+

∑𝑗∈𝒩𝑖
𝑤𝑖𝑗 𝑥𝑗, 𝑤𝑖+𝜏)

where 𝑥−𝑖 represents all elements of 𝑥 except 𝑥𝑖, the neighborhood 𝒩𝑖 of region 𝑖 is the set of all
𝑗 for which region 𝑗 is a neighbor of region 𝑖, 𝑤𝑖+ = ∑𝑗∈𝒩𝑖

𝑤𝑖𝑗, and the Normal distribution is
parameterized in terms of precision.

9.1.2 Example
Here we provide an example model using the intrinsic Gaussian dcar_normal distribution. The
CAR process values are used in a spatially-dependent Poisson regression.

To mimic the behavior of WinBUGS, we specify zero_mean = 1 to enforce a zero-mean constraint
on the CAR process, and therefore include a separate intercept term alpha in the model. Note
that we do not necessarily recommend imposing this constraint, per the discussion earlier in this
chapter.
code <- nimbleCode({

alpha ~ dflat()
beta ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
s[1:N] ~ dcar_normal(adj[1:L], weights[1:L], num[1:N], tau, zero_mean = 1)
for(i in 1:N) {

log(lambda[i]) <- alpha + beta*x[i] + s[i]
y[i] ~ dpois(lambda[i])

}
})

L <- 8
constants <- list(N = 4, L = L, num = c(3, 2, 2, 1), weights = rep(1, L),

adj = c(2,3,4,1,3,1,2,1), x = c(0, 2, 2, 8))
data <- list(y = c(6, 9, 7, 12))
inits <- list(alpha = 0, beta = 0, tau = 1, s = c(0, 0, 0, 0))
Rmodel <- nimbleModel(code, constants, data, inits)

The resulting model may be carried through to MCMC sampling. NIMBLE will assign a specialized
sampler to the update the elements of the CAR process. See Chapter 7 for information about
NIMBLE’s MCMC engine, and Section 9.3 for details on MCMC sampling of the CAR processes.

116 CHAPTER 9. SPATIAL MODELS

9.2 Proper Gaussian CAR model: dcar_proper
The proper Gaussian conditional autoregressive model used to model dependence of block-level
values (e.g., spatial areas or temporal blocks) is implemented in NIMBLE as the dcar_proper
distribution. Additional details of using this distribution are available using help('CAR-Proper').

Proper CAR models are proper priors for random fields (e.g., temporal or spatial processes). The
prior is a joint prior across a collection of latent process values. For more technical details on proper
CAR models please see Banerjee et al. (2015), including considerations of why the improper CAR
model may be preferred.

In addition to our focus here on CAR modeling for spatial data, the proper CAR model can also
be used in other contexts, such as for temporal data in a discrete time context.

9.2.1 Specification and density
NIMBLE uses the same parameterization as WinBUGS / GeoBUGS for the dcar_proper distribu-
tion, providing compatibility with existing WinBUGS code. NIMBLE also provides the WinBUGS
name car.proper as an alias.

9.2.1.1 Specification

The dcar_proper distribution is specified for a set of N spatially dependent regions as:

x[1:N] ~ dcar_proper(mu, C, adj, num, M, tau, gamma)

There is no option of a zero-mean constraint for proper CAR process, and instead the mean for
each region is specified by the mu parameter. The elements of mu can be assigned fixed values or
may be specified using one common, or multiple, prior distributions.

The C, adj, num and M parameters define the adjacency structure, normalized weights, and con-
ditional variances of the spatially-dependent field. See help('CAR-Proper') for details of these
parameters. When specifying a CAR distribution, these parameters must have constant values.
They do not necessarily have to be specified as constants when creating a model object using
nimbleModel, but they should be defined in a static way: as right-hand-side only variables with
initial values provided as constants, data or inits, or using fixed numerical deterministic decla-
rations.

The adjacency structure defined by adj must be symmetric. That is, if region 𝑖 is neighbor of
region 𝑗, then region 𝑗 must also be a neighbor of region 𝑖. In addition, the normalized weights
specified in C must satisfy a symmetry constraint jointly with the conditional variances given in
M. This constraint requires that 𝑀−1𝐶 is symmetric, where 𝑀 is a diagonal matrix of conditional
variances and 𝐶 is the normalized (each row sums to one) weight matrix. Equivalently, this implies
that 𝐶𝑖𝑗𝑀𝑗𝑗 = 𝐶𝑗𝑖𝑀𝑖𝑖 for all pairs of neighboring regions 𝑖 and 𝑗. NIMBLE performs a check of
these symmetries and will issue an error message if asymmetry is detected.

Two options are available to simplify the process of constructing the C and M arguments; both options
are demonstrated in the example. First, these arguments may be omitted from the dcar_proper
specification. In this case, values of C and M will be generated that correspond to all weights being
equal to one, or equivalently, a symmetric weight matrix containing only zeros and ones. Note that
C and M should either both be provided, or both be omitted from the specification.

9.2. PROPER GAUSSIAN CAR MODEL: DCAR_PROPER 117

Second, a convenience function as.carCM is provided to generate the C and M arguments corre-
sponding to a specified set of symmetric unnormalized weights. If weights contains the non-zero
weights corresponding to an unnormalized weight matrix (weights is precisely the argument that
can be used in the dcar_normal specification), then a list containing C and M can be generated
using as.carCM(adj, weights, num). In this case, the resulting C contains the row-normalized
weights, and the resulting M is a vector of the inverse row-sums of the unnormalized weight matrix.

The scalar precision tau may be treated as an unknown model parameter and itself assigned a
prior distribution. Care should be taken in selecting a prior distribution for tau, and WinBUGS
suggests that users be prepared to carry out a sensitivity analysis for this choice.

An appropriate value of the gamma parameter ensures the propriety of the dcar_proper distribution.
The value of gamma must lie between fixed bounds, which are given by the reciprocals of the largest
and smallest eigenvalues of 𝑀−1/2𝐶𝑀1/2. These bounds can be calculated using the function
carBounds or separately using the functions carMinBound and carMaxBound. For compatibility
with WinBUGS, NIMBLE provides min.bound and max.bound as aliases for carMinBound and
carMaxBound. Rather than selecting a fixed value of gamma within these bounds, it is recommended
that gamma be assigned a uniform prior distribution over the region of permissible values.

Note that when C and M are omitted from the dcar_proper specification (and hence all weights are
taken as one), or C and M are calculated from a symmetric weight matrix using the utility function
as.carCM, then the bounds on gamma are necessarily (−1, 1). In this case, gamma can simply be
assigned a prior over that region. This approach is shown in both examples.

9.2.1.2 Density

The proper CAR density is given as:

𝑝(𝑥|𝜇, 𝐶, 𝑀, 𝜏, 𝛾) ∼ MVN (𝜇, 1
𝜏 (𝐼 − 𝛾𝐶)−1𝑀)

where the multivariate normal distribution is parameterized in terms of covariance.

For the purposes of MCMC sampling the individual CAR process values, the resulting conditional
prior of region 𝑖 is:

𝑝(𝑥𝑖|𝑥−𝑖, 𝜇, 𝐶, 𝑀, 𝜏, 𝛾) ∼ N (𝜇𝑖 + ∑𝑗∈𝒩𝑖
𝛾 𝐶𝑖𝑗 (𝑥𝑗 − 𝜇𝑗), 𝑀𝑖𝑖

𝜏)

where 𝑥−𝑖 represents all elements of 𝑥 except 𝑥𝑖, the neighborhood 𝒩𝑖 of region 𝑖 is the set of all 𝑗
for which region 𝑗 is a neighbor of region 𝑖, and the Normal distribution is parameterized in terms
of variance.

9.2.2 Example
We provide two example models using the proper Gaussian dcar_proper distribution. In both,
the CAR process values are used in a spatially-dependent logistic regression to model binary pres-
ence/absence data. In the first example, the C and M parameters are omitted, which uses weights
equal to one for all neighbor relationships. In the second example, symmetric unnormalized weights
are specified, and as.carCM is used to construct the C and M parameters to the dcar_proper dis-
tribution.

118 CHAPTER 9. SPATIAL MODELS

omitting C and M sets all non-zero weights to one
code <- nimbleCode({

mu0 ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
gamma ~ dunif(-1, 1)
s[1:N] ~ dcar_proper(mu[1:N], adj=adj[1:L], num=num[1:N], tau=tau,

gamma=gamma)
for(i in 1:N) {

mu[i] <- mu0
logit(p[i]) <- s[i]
y[i] ~ dbern(p[i])

}
})

adj <- c(2, 1, 3, 2, 4, 3)
num <- c(1, 2, 2, 1)
constants <- list(adj = adj, num = num, N = 4, L = 6)
data <- list(y = c(1, 0, 1, 1))
inits <- list(mu0 = 0, tau = 1, gamma = 0, s = rep(0, 4))
Rmodel <- nimbleModel(code, constants, data, inits)

specify symmetric unnormalized weights, use as.carCM to generate C and M
code <- nimbleCode({

mu0 ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
gamma ~ dunif(-1, 1)
s[1:N] ~ dcar_proper(mu[1:N], C[1:L], adj[1:L], num[1:N], M[1:N], tau,

gamma)
for(i in 1:N) {

mu[i] <- mu0
logit(p[i]) <- s[i]
y[i] ~ dbern(p[i])

}
})

weights <- c(2, 2, 3, 3, 4, 4)
CM <- as.carCM(adj, weights, num)
constants <- list(C = CM$C, adj = adj, num = num, M = CM$M, N = 4, L = 6)
Rmodel <- nimbleModel(code, constants, data, inits)

Each of the resulting models may be carried through to MCMC sampling. NIMBLE will assign
a specialized sampler to update the elements of the CAR process. See Chapter 7 for information
about NIMBLE’s MCMC engine, and Section 9.3 for details on MCMC sampling of the CAR
processes.

9.3. MCMC SAMPLING OF CAR MODELS 119

9.3 MCMC Sampling of CAR models
NIMBLE’s MCMC engine provides specialized samplers for the dcar_normal and dcar_proper
distributions. These samplers perform sequential univariate updates on the components of the
CAR process. Internally, each sampler assigns one of three specialized univariate samplers to each
component, based on inspection of the model structure:

1. A conjugate sampler in the case of conjugate Normal dependencies.
2. A random walk Metropolis-Hastings sampler in the case of non-conjugate dependencies.
3. A posterior predictive sampler in the case of no dependencies.

Note that these univariate CAR samplers are not the same as NIMBLE’s standard conjugate,
RW, and posterior_predictive samplers, but rather specialized versions for operating on a CAR
distribution. Details of these assignments are strictly internal to the CAR samplers.

In future versions of NIMBLE we expect to provide block samplers that update the entire CAR
process as a single sample. This may provide improved MCMC performance by accounting for
dependence between elements, particularly when conjugacy is available.

9.3.1 Initial values

Valid initial values should be provided for all elements of the process specified by a CAR structure
before running an MCMC. This ensures that the conditional prior distribution is well-defined for
each region. A simple and safe choice of initial values is setting all components of the process equal
to zero, as is done in the preceding CAR examples.

For compatibility with WinBUGS, NIMBLE also allows an initial value of NA to be provided for
regions with zero neighbors. This particular initialization is required in WinBUGS, so this allows
users to make use of existing WinBUGS code.

9.3.2 Zero-neighbor regions

Regions with zero neighbors (defined by a 0 appearing in the num parameter) are a special case
for both the dcar_normal and dcar_proper distribution. The corresponding neighborhood 𝒩 of
such a region contains no elements, and hence the conditional prior is improper and uninformative,
tantamount to a dflat prior distribution. Thus, the conditional posterior distribution of those
regions is entirely determined by the dependent nodes, if any. Sampling of these zero-neighbor
regions proceeds as:

1. In the conjugate case, sampling proceeds according to the conjugate posterior.
2. In the non-conjugate case, sampling proceeds using random walk Metropolis-Hastings, where

the posterior is determined entirely by the dependencies.
3. In the case of no dependents, the posterior is entirely undefined. Here, no changes will

be made to the process value, and it will remain equal to its initial value throughout. By
virtue of having no neighbors, this region does not contribute to the density evaluation of
the subsuming dcar_normal node nor to the conditional prior of any other regions, hence its
value (even NA) is of no consequence.

This behavior is different from that of WinBUGS, where the value of zero-neighbor regions of
car.normal nodes is set to and fixed at zero.

120 CHAPTER 9. SPATIAL MODELS

Also note that for the dcar_proper distribution if any regions have zero neighbors the joint density
of the process cannot be calculated. As a result one cannot do MCMC sampling of unknown
parameters affecting the mean (mu) of the process, though one can instead use an uncentered
parameterization in which the mean is added to the process rather than the process being centered
on the mean. Or one could remove such regions from the process and model them separately.

9.3.3 Zero-mean constraint
A zero-mean constraint is available for the intrinsic Gaussian dcar_normal distribution. This con-
straint on the ICAR process values is imposed during MCMC sampling, if the argument zero_mean
= 1, mimicking the behavior of WinBUGS. Following the univariate updates on each component,
the mean is subtracted away from all process values, resulting in a zero-mean process.

Note that this is not equivalent to sampling under the constraint that the mean is zero (see p. 36
of Rue and Held (2005)) so should be treated as an ad hoc approach and employed with caution.

Chapter 10

Bayesian nonparametric models

10.1 Bayesian nonparametric mixture models
NIMBLE provides support for Bayesian nonparametric (BNP) mixture modeling. The current
implementation provides support for hierarchical specifications involving Dirichlet process (DP)
mixtures (Ferguson, 1973, 1974; Lo, 1984; Escobar, 1994; Escobar and West, 1995). More specifi-
cally, a DP mixture model takes the form

𝑦𝑖 ∣ 𝐺 𝑖𝑖𝑑∼ ∫ ℎ(𝑦𝑖 ∣ 𝜃)𝐺(𝑑𝜃),

𝐺 ∣ 𝛼, 𝐺0 ∼ 𝐷𝑃(𝛼, 𝐺0),

where ℎ(⋅ ∣ 𝜃) is a suitable kernel with parameter 𝜃, and 𝛼 and 𝐺0 are the concentration and baseline
distribution parameters of the DP, respectively. DP mixture models can be written with different
levels of hierarchy, all being equivalent to the model above.

When the random measure 𝐺 is integrated out from the model, the DP mixture model can be
written using latent or membership variables, 𝑧𝑖, following a Chinese Restaurant Process (CRP)
distribution (Blackwell and MacQueen, 1973), discussed in Section 10.2. The model takes the form

𝑦𝑖 ∣ ̃𝜃, 𝑧𝑖
𝑖𝑛𝑑∼ ℎ(⋅ ∣ ̃𝜃𝑧𝑖

),

𝑧 ∣ 𝛼 ∼ CRP(𝛼), ̃𝜃𝑗
𝑖𝑖𝑑∼ 𝐺0,

where CRP(𝛼) denotes the CRP distribution with concentration parameter 𝛼.

If a stick-breaking representation (Sethuraman, 1994), discussed in section 10.3, is assumed for the
random measure 𝐺, then the model takes the form

𝑦𝑖 ∣ 𝜃⋆, 𝑣 𝑖𝑛𝑑∼
∞

∑
𝑙=1

{𝑣𝑙 ∏
𝑚<𝑙

(1 − 𝑣𝑚)} ℎ(⋅ ∣ 𝜃⋆
𝑙),

𝑣𝑙 ∣ 𝛼 𝑖𝑖𝑑∼ 𝐵𝑒𝑡𝑎(1, 𝛼), 𝜃⋆
𝑙

𝑖𝑖𝑑∼ 𝐺0.

121

122 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

More general representations of the random measure can be specify by considering 𝑣𝑙 ∣ 𝜈𝑙, 𝛼𝑙
𝑖𝑛𝑑∼

𝐵𝑒𝑡𝑎(𝜈𝑙, 𝛼𝑙). Finite dimensional approximations can be obtained by truncating the infinite sum to
have 𝐿 components.

Different representations of DP mixtures lead to different computational algorithms. NIMBLE
supports sampling algorithms based on the CRP representation, as well as on the stick-breaking
representation. NIMBLE includes definitions of structures required to implement the CRP and
stick-breaking distributions, and the associated MCMC algorithms.

10.2 Chinese Restaurant Process model
The CRP is a distribution over the space of partitions of positive integers and is implemented
in NIMBLE as the dCRP distribution. More details for using this distribution are available using
help(CRP).

The CRP can be described as a stochastic process in which customers arrive at a restaurant,
potentially with an infinite number of tables. Each customer sits at an empty or occupied table
according to probabilities that depend on the number of customers in the occupied tables. Thus,
the CRP partitions the set of customers, through their assignment to tables in the restaurant.

10.2.1 Specification and density
NIMBLE parametrizes the dCRP distribution by a concentration parameter and a size parameter.

10.2.1.1 Specification

The dCRP distribution is specified in NIMBLE for a membership vector z as

z[1:N] ~ dCRP(conc, size)

The conc parameter is the concentration parameter of the CRP, controlling the probability of a
customer sitting on a new table, i.e., creating a new cluster. The size parameter defines the size
of the set of integers to be partitioned.

The conc parameter is a positive real value that can be treated as known or unknown. When a
gamma prior is assumed for the conc parameter, a specialized sampler is assigned. See more on
this in section 10.4.1.

The size parameter is a positive integer that has to be fixed and equal to the length of vector z.
It defines the set of consecutive integers from 1 to N to be partitioned. Each element in z can be
an integer from 1 to N, and repetitions are allowed.

10.2.1.2 Density

The CRP distribution partitions the set of positive integers 1, … , 𝑁 , into 𝑁 ⋆ ≤ 𝑁 disjoint subsets,
indicating to which subset each element belongs. For instance, if 𝑁 = 6, the set {1, 2, 3, 4, 5, 6}
can be partitioned into the subsets 𝑆1 = {1, 2, 6}, 𝑆2 = {4, 5}, and 𝑆3 = {3}. Note that 𝑁 ⋆ = 3,
and this is one partition from out of 203 possibilities. The CRP-distributed vector 𝑧 encodes this
partition and its observed values would be (1, 1, 3, 2, 2, 1), for this example. In mixture modeling,
this indicates that observations 1, 2, and 6 belong to cluster 1, observations 4 and 5 to cluster 2,

10.2. CHINESE RESTAURANT PROCESS MODEL 123

and observation 3 to cluster 3. Note that this representation is not unique, vector (2, 2, 1, 3, 3, 2)
encodes the same partition.

The joint probability function of 𝑧 = (𝑧1, … , 𝑧𝑁), with concentration parameter 𝛼, is given by

𝑝(𝑧 ∣ 𝛼) ∝ Γ(𝛼)
Γ(𝛼 + 𝑛)𝛼𝑁⋆(𝑧)

𝑁⋆(𝑧)
∏
𝑘=1

Γ(𝑚𝑘(𝑧)),

where 𝑚𝑘(𝑧) denotes the number of elements in 𝑧 that are equal to 𝑘, 𝑁 ⋆(𝑧) denotes the number
of unique elements in 𝑧, and Γ(⋅) denotes the gamma function. The full conditional distribution
for 𝑧𝑖 given 𝑧−𝑖 is

𝑝(𝑧𝑖 = 𝑚 ∣ 𝑧−𝑖, 𝛼) = 1
𝑛 − 1 + 𝛼 ∑

𝑗≠𝑖
1{𝑧𝑗}(𝑚) + 𝛼

𝑛 − 1 + 𝛼1{𝑧𝑛𝑒𝑤}(𝑚),

where 𝑧−𝑖 denotes vector 𝑧 after removing its 𝑖−th component, 𝑧𝑛𝑒𝑤 is a value not in 𝑧−𝑖, and 1𝐴
denotes the indicator function at set 𝐴.

Note that the probability of creating a new cluster is proportional to 𝛼: the larger the concentration
parameter, the more clusters are created.

10.2.2 Example
The following example illustrates how to use NIMBLE to perform single density estimation for real-
valued data, under a BNP approach, using the dCRP distribution. (Note that the BNP approach is
also often used to perform density estimation on random effects.) The model is given by

𝑦𝑖 ∣ ̃𝜃, �̃�2, 𝑧𝑖
𝑖𝑛𝑑∼ 𝑁(̃𝜃𝑧𝑖

, �̃�2
𝑧𝑖

), 𝑖 = 1, … , 𝑁,
𝑧 ∼ CRP(𝛼), 𝛼 ∼ Gamma(1, 1),

̃𝜃𝑗
𝑖𝑖𝑑∼ 𝑁(0, 100), �̃�2

𝑗
𝑖𝑖𝑑∼ InvGamma(1, 1), 𝑗 = 1, … , 𝑀.

code <- nimbleCode({
z[1:N] ~ dCRP(alpha, size = N)
alpha ~ dgamma(1, 1)
for(i in 1:M) {
thetatilde[i] ~ dnorm(0, var = 100)
s2tilde[i] ~ dinvgamma(1, 1)

}
for(i in 1:N)
y[i] ~ dnorm(thetatilde[z[i]], var = s2tilde[z[i]])

})

set.seed(1)
constants <- list(N = 100, M = 50)
data <- list(y = c(rnorm(50, -5, sqrt(3)), rnorm(50, 5, sqrt(4))))
inits <- list(thetatilde = rnorm(constants$M, 0, 10),

124 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

s2tilde = rinvgamma(constants$M, 1, 1),
z = sample(1:10, size = constants$N, replace = TRUE),
alpha = 1)

model <- nimbleModel(code, constants, data, inits)

The model can be fitted through MCMC sampling. NIMBLE will assign a specialized sampler to
update z and alpha. See Chapter 7 for information about NIMBLE’s MCMC engine, and Section
10.4.1 for details on MCMC sampling of the CRP.

One of the advantages of BNP mixture models is that the number of clusters is treated as random.
Therefore, in MCMC sampling, the number of cluster parameters varies with the iteration. Since
NIMBLE does not currently allow dynamic length allocation, the number of unique cluster param-
eters, 𝑁 ⋆, has to be fixed. One safe option is to set this number to 𝑁 , but this is inefficient, both
in terms of computation and in terms of storage, because in practice it is often that 𝑁 ⋆ < 𝑁 . In
addition, configuring and building the MCMC can be slow (and use a lot of memory) for large 𝑁 .
In an effort to mitigate these inefficiencies, we allow the user to set 𝑁 ⋆ = 𝑀 , with 𝑀 < 𝑁 , as
seen in the example above. However, if this number is too small and is exceeded in any iteration a
warning is issued.

10.2.3 Extensions
The BNP functionality in NIMBLE was extended in version 0.10.0 to more general models. These
extensions enable users, for instance, to use a DP or DPM prior for the distribution of the random
effects in a generalized linear mixed effects model with mutiple measurements over time or multiple
trials per participant.

The following example illustrates how to use NIMBLE in a random effects model with repeated
measurements per subject using a DP prior for the distribution of the subject’s random effects.
The model is given by

𝑦𝑖,𝑗 ∣ ̃𝜃, 𝑧𝑖, 𝜎2 ∼ 𝑁(̃𝜃𝑧𝑖
, 𝜎2), 𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝐽,

𝑧 ∼ CRP(𝛼), 𝛼 ∼ Gamma(1, 1),

̃𝜃𝑚
𝑖𝑖𝑑∼ 𝑁(0, 100), 𝑚 = 1, … , 𝑀, 𝜎2 ∼ InvGamma(1, 1).

The corresponding NIMBLE code is
code <- nimbleCode({

z[1:N] ~ dCRP(alpha, size = N)
alpha ~ dgamma(1, 1)
sigma2 ~ dinvgamma(1, 1)
for(i in 1:M) {
thetatilde[i] ~ dnorm(0, var = 100)

}
for(i in 1:N) {
for(j in 1:J) {

10.3. STICK-BREAKING MODEL 125

y[i, j] ~ dnorm(thetatilde[z[i]], var = sigma2)
}

}
})

set.seed(1)
constants <- list(N = 10, J = 5, M = 5)
data <- list(y = matrix(c(rnorm(25, -25, 1), rnorm(25, 25, 1)), ncol=constants$J,

nrow=constants$N, byrow=TRUE))
inits <- list(thetatilde = rnorm(constants$M, 0, 10),

z = sample(1:5, size = constants$N, replace = TRUE),
alpha = 1,
sigma2 = 1)

modelRandEff <- nimbleModel(code, constants, data, inits)

Alternatively, each subject could have a vector of parameters being clustered. For example in
the model above one could instead specify a vector of means, such as thetaTilde[z[i], j],
instead of a single mean. This allows group-specific parameters to also vary across the repeated
mesasurements.

As before, the model can be fitted through MCMC sampling. NIMBLE will assign a specialized
sampler to update z and alpha. See Chapter 7 for information about NIMBLE’s MCMC engine,
and Section 10.4.1 for details on MCMC sampling of the CRP.

10.3 Stick-breaking model
In NIMBLE, weights defined by sequentially breaking a stick, as in the stick-breaking process,
are implemented as the stick_breaking link function. More details for using this function are
available using help(stick_breaking).

10.3.1 Specification and function

NIMBLE parametrizes the stick_breaking function by vector of values in (0, 1).

10.3.1.1 Function

The weights (𝑤1, … , 𝑤𝐿) follow a finite stick-breaking construction if

𝑤1 = 𝑣1,

𝑤𝑙 = 𝑣𝑙 ∏
𝑚<𝑙

(1 − 𝑣𝑚), 𝑙 = 2, … , 𝐿 − 1

𝑤𝐿 = ∏
𝑚<𝐿

(1 − 𝑣𝑚).

for 𝑣𝑙 ∈ [0, 1], 𝑙 = 1, … , 𝐿 − 1.

126 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

10.3.1.2 Specification

The stick_breaking function is specified in NIMBLE for a vector w of probabilities as

w[1:L] <- stick_breaking(v[1:(L-1)])

The argument v is a vector of values between 0 and 1 defining the sequential breaking points of
the stick after removing the previous portions already broken off. It is of length 𝐿 − 1, implicitly
assuming that its last component is equal to 1.

In order to complete the definition of the weights in the stick-breaking representation of 𝐺, a prior
distribution on (0, 1) should to be assumed for 𝑣𝑙, 𝑙 = 1, … , 𝐿 − 1, for instance a beta prior.

10.3.2 Example
Here we illustrate how to use NIMBLE for the example described in section 10.2.2, but considering
a stick-breaking representation for 𝐺. The model is given by

𝑦𝑖 ∣ 𝜃⋆, 𝜎⋆2, 𝑧𝑖
𝑖𝑛𝑑∼ 𝑁(𝜃⋆

𝑧𝑖
, 𝜎2⋆

𝑧𝑖
), 𝑖 = 1, … , 𝑁,

𝑧𝑖 ∼ Categorical(𝑤), 𝑖 = 1, … , 𝑁,

𝑣𝑙
𝑖𝑖𝑑∼ Beta(1, 𝛼), 𝑙 = 1, … , 𝐿 − 1,

𝛼 ∼ Gamma(1, 1),

𝜃⋆
𝑙

𝑖𝑖𝑑∼ 𝑁(0, 100), 𝜎2⋆
𝑙

𝑖𝑖𝑑∼ InvGamma(1, 1), 𝑙 = 1, … , 𝐿.

where 𝑤1 = 𝑣1, 𝑤𝑙 = 𝑣𝑙 ∏𝑚<𝑙(1 − 𝑣𝑚), for 𝑙 = 1, … , 𝐿 − 1, and 𝑤𝐿 = ∏𝑚<𝐿(1 − 𝑣𝑚).
code <- nimbleCode({

for(i in 1:(L-1)){
v[i] ~ dbeta(1, alpha)

}
alpha ~ dgamma(1, 1)
w[1:L] <- stick_breaking(v[1:(L-1)])
for(i in 1:L) {
thetastar[i] ~ dnorm(0, var = 100)
s2star[i] ~ dinvgamma(1, 1)

}
for(i in 1:N) {
z[i] ~ dcat(w[1:L])
y[i] ~ dnorm(thetastar[z[i]], var = s2star[z[i]])

}
})

set.seed(1)
constants <- list(N = 100, L=50)
data <- list(y = c(rnorm(50, -5, sqrt(3)), rnorm(50, 5, sqrt(4))))
inits <- list(thetastar = rnorm(constants$L, 0, 100),

s2star = rinvgamma(constants$L, 1, 1),
z = sample(1:10, size = constants$N, replace = TRUE),

10.4. MCMC SAMPLING OF BNP MODELS 127

v = rbeta(constants$L, 1, 1),
alpha = 1)

modelSB <- nimbleModel(code, constants, data, inits)

The resulting model may be carried through to MCMC sampling. NIMBLE will assign a specialized
sampler to update v. See Chapter 7 for information about NIMBLE’s MCMC engine, and Section
10.4.2 for details on MCMC sampling of the stick-breaking weights.

10.4 MCMC sampling of BNP models
BNP models can be specified in different, yet equivalent, manners. Examples 10.2.2 and 10.3.2
are examples of density estimation for real-valued data, and are specified through the CRP and
the stick-breaking process, respectively. Different specifications lead NIMBLE to assign different
sampling algorithms for the model. When the model is specified through a CRP, a collapsed sampler
(Neal, 2000) is assigned. Under this specification, the random measure 𝐺 is integrated out from
the model. When a stick-breaking representation is used, a blocked Gibbs sampler is assigned, see
Ishwaran and James (2001) and Ishwaran and James (2002).

10.4.1 Sampling CRP models
NIMBLE’s MCMC engine provides specialized samplers for the dCRP distribution, updating each
component of the membership vector sequentially. Internally, the sampler is assigned based on
inspection of the model structure, evaluating conjugacy between the mixture kernel and the baseline
distribution, as follows:

1. A conjugate sampler in the case of the baseline distribution being conjugate for the mixture
kernel.

2. A non-conjugate sampler in the case of the baseline distribution not being conjugate for the
mixture kernel.

Note that both samplers are specialized versions that operate on a vector having a CRP distribution.
Details of these assignments are strictly internal to the CRP samplers. The current release of
NIMBLE supports conjugate sampling for the dCRP distribution for the relationships listed in
Table 10.1. Additional relationships are provided in Table 10.2 for normal mixture kernels when
both mean and variance are unknown.

Table 10.1: Conjugate relationships for the dCRP distribution
supported by NIMBLE’s MCMC engine.

Baseline Distribution Mixture (Dependent Node) Distribution Parameter
Beta Bernoulli prob

Binomial prob
Negative Binomial prob

Dirichlet Multinomial prob
Gamma Poisson lambda

Normal tau
Gamma rate
Inverse Gamma scale

128 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

Baseline Distribution Mixture (Dependent Node) Distribution Parameter
Exponential rate
Weibull lambda

Inverse Gamma Normal var
Normal Normal mean
Multivariate Normal Multivariate Normal mean
Wishart Multivariate Normal prec
Inverse Wishart Multivariate Normal cov

Table 10.2: Additional conjugate relationships for the dCRP
distribution supported by NIMBLE’s MCMC engine.

Baseline Distribution Mixture (Dependent Node) Distribution Parameter
Normal-Gamma Normal mean, tau
Normal-Inverse Gamma Normal mean, var
Multivariate Normal-Wishart Multivariate Normal mean, prec
Multivariate Normal-Inverse Wishart Multivariate Normal mean, cov

To reduce computation and improve mixing, we only sample the parameters of the clusters (e.g., ̃𝜃𝑗
in 10.2.2 when the associated cluster is occupied, using the CRP_cluster_wrapper sampler, which
wraps around an underlying actual sampler. In addition, this approach requires that any sampler
assigned to parameters of the base measure, 𝐺0, (i.e., unknown parameters in the prior for ̃𝜃𝑗)
ignore cluster parameters associated with clusters that are not occupied, since their current values
are meaningless. We assign a special slice sampler that determines the occupied clusters in any
given iteration, called slice_CRP_base_param. Note that if you choose to use a different sampler
for the base measure parameters, you should also avoid using the CRP_cluster_wrapper sampler.

Finally, a specialized sampler is assigned to the conc hyper parameter when a gamma hyper prior
is assigned, see section 6 in Escobar and West (1995) for more details. Otherwise, a random walk
Metropolis-Hastings sampler is assigned.

10.4.1.1 Initial values

Valid initial values should be provided for all elements of the process specified by a CRP structure
before running the MCMC. A simple and safe choice for z is to provide a sample of size N, the same
as its length, of values between 1 and some reasonable number of clusters (less than or equal to
the length of z), with replacement, as done in the preceding CRP example. For the concentration
parameter, a safe initial value is 1.

10.4.1.2 Sampling the random measure

In BNP models, it is oftenly of interest to make inference about the unknown measure 𝐺. NIMBLE
provides the getSamplesDPmeasure sampler to generate posterior samples of the random measure
𝐺 when a CRP structure is involved in the model.

The getSamplesDPmeasure function has two arguments: MCMC and epsilon.

10.4. MCMC SAMPLING OF BNP MODELS 129

The MCMC argument is a compiled or uncompiled MCMC object. The MCMC object should monitor
the membership (or clustering) variable, the cluster parameters, all stochastic nodes of the cluster
parameters, and the concentration parameter, if it is random. Use the monitors argument when
configuring the MCMC to ensure these variables are monitored.

The epsilon argument is used to determine the truncation level of the representation of the random
measure. Its default value is 1𝑒 − 04.

The sampler is used only after the MCMC for the model has been run; more details are available
from help(getsamplesDPmeasure).

Posterior samples of the random measure 𝐺 are (almost surely) of the form ∑∞
𝑙=1 𝑤𝑙𝛿𝜃𝑙

, where 𝛿𝜃
is the Dirac measure at 𝜃, 𝑤𝑙 are stick-breaking weights, and 𝜃𝑙 are atoms (or point masses). The
variables that define the stick-breaking weights are iid 𝐵𝑒𝑡𝑎(1, 𝛼 + 𝑁) distributed, where 𝛼 is the
concentration parameter of the CRP distribution and 𝑁 is the sample size. Independently, the
atoms, 𝜃𝑙, are iid and follow a distribution of the form

(𝛼 + 𝑁)−1
𝑁⋆(𝑧)
∑
𝑘=1

𝑚𝑘(𝑧)𝛿{ ̃𝜃𝑘} + 𝛼(𝛼 + 𝑁)−1𝐺0,

where 𝐺0 is the prior baseline distribution, and 𝑧 and ̃𝜃𝑘 are posterior samples of the labeling vector
and cluster parameters, respectively. Their values, together with the values of 𝛼 (if random) are
obtained from the MCMC’s output. Expressions 𝑚𝑘(𝑧) and 𝑁 ⋆(𝑧) are defined as in section 10.2.

The getsamplesDPmeasure function provides samples of a truncated version of the infinite mixture
to a level 𝐿. The truncation level 𝐿 is such that the tail probability left from the approximation
is at most epsilon, denoted 𝜖. The following relationship determines the truncation level: 𝐿 =
log(𝜖)/ log[(𝛼 + 𝑁)/(𝛼 + 𝑁 + 1)]. The value of 𝐿 varies at each iteration of the MCMC’s output
when 𝛼 is random, while it is the same at each iteration when 𝛼 is fixed. For more details about
sampling the random measure and its truncation level see Gelfand and Kottas (2002).

Because of the discrete nature of the atom’s distribution, the stick-breaking representation trun-
cated to a level 𝐿 will generally have repeated values. Therefore, in order to reduce the output’s
dimensionality, the stick-breaking weights of identical atoms are added up. This results in samples
of 𝐺 that have only the ‘unique’ atoms in {𝜃𝑙}𝐿

𝑙=1.

The following code exemplifies how to generate samples from 𝐺 after defining the model as in
Section 10.2.2.
cmodel <- compileNimble(model)

monitors <- c('z', 'thetatilde', 's2tilde' , 'alpha')
modelConf <- configureMCMC(model, monitors = monitors)
modelMCMC <- buildMCMC(modelConf)

cmodelMCMC <- compileNimble(modelMCMC, project = model)
cmodelMCMC$run(1000)

samplesG <- getSamplesDPmeasure(cmodelMCMC)

130 CHAPTER 10. BAYESIAN NONPARAMETRIC MODELS

10.4.2 Sampling stick-breaking models
NIMBLE’s MCMC engine provides specialized samplers for the beta-distributed random variables
that are the arguments to the stick-breaking function, updating each component of the weight vector
sequentially. The sampler is assigned based on inspection of the model structure. Specifically, the
specialized sampler is assigned when the membership vector has a categorical distribution, its
weights are defined by a stick-breaking function, and the vector defining the weights follows a beta
distribution.

10.4.2.1 Initial values

Valid initial values should be provided for all elements of the stick-breaking function and member-
ship variable before running the MCMC. A simple and safe choice for 𝑧 is to provide a sample of
size 𝑁 , of values between 1 and some value less than 𝐿, with replacement, as done in the preceding
stick-breaking example. For the stick variables, safe initial values can be simulated from a beta
distribution.

Part IV

Programming with NIMBLE

131

Overview

Part IV is the programmer’s guide to NIMBLE. At the heart of programming in NIMBLE are
nimbleFunctions. These support two principal features: (1) a setup function that is run once for
each model, nodes, or other setup arguments, and (2) run functions that will be compiled to C++
and are written in a subset of R enhanced with features to operate models. Formally, what can be
compiled comprises the NIMBLE language, which is designed to be R-like.

This part of the manual is organized as follows:

• Chapter 11 describes how to write simple nimbleFunctions, which have no setup code and
hence don’t interact with models, to compile parts of R for fast calculations. This covers the
subset of R that is compilable, how to declare argument types and return types, and other
information.

• Chapter 12 explains how to write nimbleFunctions that can be included in BUGS code as
user-defined distributions or user-defined functions.

• Chapter 13 introduces more features of NIMBLE models that are useful for writing nimble-
Functions to use models, focusing on how to query model structure and carry out model
calculations.

• Chapter 14 introduces two kinds of data structures: modelValues are used for holding mul-
tiple sets of values of model variables; nimbleList data structures are similar to R lists but
require fixed element names and types, allowing the NIMBLE compiler to use them.

• Chapter 15 draws on the previous chapters to show how to write nimbleFunctions that work
with models, or more generally that have a setup function for any purpose. Typically a
setup function queries model structure (Chapter 13) and may establish some modelValues or
nimbleList data structures or configurations (Chapter 14). Then run functions written in
the same way as simple nimbleFunctions (Chapter 11) along with model operations (Chapter
13) define algorithm computations that can be compiled via C++.

133

134

Chapter 11

Writing simple nimbleFunctions

11.1 Introduction to simple nimbleFunctions

nimbleFunctions are the heart of programming in NIMBLE. In this chapter, we introduce simple
nimbleFunctions that contain only one function to be executed, in either compiled or uncompiled
form, but no setup function or additional methods.

Defining a simple nimbleFunction is like defining an R function: nimbleFunction returns a function
that can be executed, and it can also be compiled. Simple nimbleFunctions are useful for doing
math or the other kinds of processing available in NIMBLE when no model or modelValues is
needed. These can be used for any purpose in R programming. They can also be used as new
functions and distributions in NIMBLE’s extension of BUGS (Chapter 12).

Here’s a basic example implementing the textbook calculation of least squares estimation of linear
regression parameters1:
solveLeastSquares <- nimbleFunction(

run = function(X = double(2), y = double(1)) { # type declarations
ans <- inverse(t(X) %*% X) %*% (t(X) %*% y)
return(ans)
returnType(double(2)) # return type declaration

})

X <- matrix(rnorm(400), nrow = 100)
y <- rnorm(100)
solveLeastSquares(X, y)

[,1]
[1,] 0.088547575
[2,] 0.002025635
[3,] -0.090387283
[4,] -0.072660391

1Of course, in general, explicitly calculating the inverse is not the recommended numerical recipe for least squares.

135

136 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

CsolveLeastSquares <- compileNimble(solveLeastSquares)
CsolveLeastSquares(X, y)

[,1]
[1,] 0.088547575
[2,] 0.002025635
[3,] -0.090387283
[4,] -0.072660391

In this example, we fit a linear model for 100 random response values (y) to four columns of
randomly generated explanatory variables (X). We ran the nimbleFunction solveLeastSquares
uncompiled, natively in R, allowing testing and debugging (Section 15.7). Then we compiled it and
showed that the compiled version does the same thing, but faster2. NIMBLE’s compiler creates
C++ that uses the Eigen (http://eigen.tuxfamily.org) library for linear algebra.

Notice that the actual NIMBLE code is written as an R function definition that is passed to
nimbleFunction as the run argument. Hence we call it the run code. run code is written in the
NIMBLE language. This is similar to a narrow subset of R with some additional features. Formally,
we view it as a distinct language that encompasses what can be compiled from a nimbleFunction.

To write nimbleFunctions, you will need to learn:

• what R functions are supported for NIMBLE compilation and any ways they differ from their
regular R counterparts;

• how NIMBLE handles types of variables;
• how to declare types of nimbleFunction arguments and return values;
• that compiled nimbleFunctions always pass arguments to each other by reference.

The next sections cover each of these topics in turn.

11.2 R functions (or variants) implemented in NIMBLE
11.2.1 Finding help for NIMBLE’s versions of R functions
Often, R help pages are available for NIMBLE’s versions of R functions using the prefix ‘nim’ and
capitalizing the next letter. For example, help on NIMBLE’s version of numeric can be found
by help(nimNumeric). In some cases help is found directly using the name of the function as it
appears in R.

11.2.2 Basic operations
Basic R operations supported for NIMBLE compilation are listed in Table 11.1.

2On the machine this is being written on, the compiled version runs a few times faster than the uncompiled version.
However we refrain from formal speed tests.

http://eigen.tuxfamily.org

11.2. R FUNCTIONS (OR VARIANTS) IMPLEMENTED IN NIMBLE 137

Table 11.1: Basic R manipulation functions in NIMBLE.
For some of these functions, in addition to the usual use of
help(), you can find help in R for NIMBLE’s version of a
function by using the “nim” prefix and capitalizing the next
letter. E.g. help(nimC) for help with c().

Function Comments (differences from R)
c() No recursive argument.
rep() No rep.int or rep_len arguments.
seq() and ‘:’ Negative integer sequences from ‘:’, e.g. , 2:1 do not work.
which() No arr.ind or useNames arguments.
diag() Works like R in three ways: diag(vector) returns a matrix with vector on the diagonal;

diag(matrix) returns the diagonal vector of matrix;
diag(n) returns an 𝑛 × 𝑛 identity matrix. No nrow or ncol arguments.

diag()<- Works for assigning the diagonal vector of a matrix.
dim() Works on a vector as well as higher-dimensional arguments.
length()
is.na() Does not correctly handle NAs (or NaNs) from R that are type 'logical' or 'integer',

so convert these using as.numeric() before passing from R to NIMBLE.
is.nan()
any() One argument only; NAs treated as FALSE.
all() One argument only; NAs treated as FALSE.
numeric() Allows additional arguments to control initialization.
logical() Allows additional arguments to control initialization.
integer() Allows additional arguments to control initialization.
matrix() Allows additional arguments to control initialization.
array() Allows additional arguments to control initialization.
indexing Arbitrary integer and logical indexing is supported for objects of one or two dimensions.

For higher-dimensional objects, only : indexing works and then only to create an object
of at most two dimensions.

In addition to the above functions, we provide functions any_na() and any_nan() for finding if
there are any NA or NaN values in a vector. These are equivalent to using any(is.na()) and
any(is.nan()) in R, with the exception noted in the table above regarding is.na().

Other R functions with numeric arguments and return value can be called during compiled execution
by wrapping them as a nimbleRcall (see Section 11.7).

Next we cover some of these functions in more detail.

11.2.2.1 numeric, integer, logical, matrix and array

numeric, integer, or logical will create a 1-dimensional vector of floating-point (or ‘double’
[precision]), integer, or logical values, respectively. The length argument specifies the vector length
(default 0), and the value argument specifies the initial value either as a scalar (used for all vector
elements, with default 0) or a vector. If a vector and its length is not equal to length, the remaining
values will be filled by R-style recycling if the recycle argument is TRUE (which is the default). The
init argument specifies whether or not to initialize the elements in compiled code (default TRUE).

138 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

If first use of the variable does not rely on initial values, using init = FALSE will yield slightly
more efficient performance.

matrix creates a 2-dimensional matrix object of either floating-point (if type = "double", the
default), integer (if type = "integer"), or logical (if type = "logical") values. As in R, nrow
and ncol arguments specify the number of rows and columns, respectively. The value and init
arguments are used in the same way as for numeric, integer, and logical.

array creates a vector or higher-dimensional object, depending on the dim argument, which takes
a vector of sizes for each dimension. The type, value and init argument behave the same as for
matrix.

The best way to create an identity matrix is with diag(n), which returns an 𝑛 × 𝑛 identity matrix.
NIMBLE also provides a deprecated nimbleFunction identityMatrix that does the same thing.

Examples of these functions, and the related function ‵𝑠𝑒𝑡𝑆𝑖𝑧𝑒‵ for changing the size of a numeric
object, are given in Section 11.3.2.4.

11.2.2.2 length and dim

length behaves like R’s length function. It returns the entire length of X. That means if X is
multivariate, length(X) returns the product of the sizes of the dimensions. NIMBLE’s version of
dim, which has synonym nimDim, behaves like R’s dim function for matrices or arrays and like R’s
length function for vectors. In other words, regardless of whether the number of dimensions is 1
or more, it returns a vector of the sizes.

11.2.2.3 Deprecated creation of non-scalar objects using declare

Previous versions of NIMBLE provided a function declare for declaring variables. The more R-
like functions numeric, integer, logical, matrix and array are intended to replace declare, but
declare is still supported for backward compatibility. In a future version of NIMBLE, declare
may be removed.

11.2.3 Math and linear algebra
Numeric scalar and matrix mathematical operations are listed in Tables 11.2-11.3.

As in R, many scalar operations in NIMBLE will work component-wise on vectors or higher dimen-
sional objects. For example if B and C are vectors, A = B + C will add them and create vector C
by component-wise addition of B and C. In the current version of NIMBLE, component-wise opera-
tions generally only work for vectors and matrices, not arrays with more than two dimensions. The
only exception is assignment: A = B will work up to NIMBLE’s current limit of four dimensions.

11.2. R FUNCTIONS (OR VARIANTS) IMPLEMENTED IN NIMBLE 139

Table 11.2: Functions operating on scalars, many of which
can operate on each element (component-wise) of vectors and
matrices. Status column indicates if the function is currently
provided in NIMBLE. Vector input column indicates if the
function can take a vector as an argument (i.e., if the function
is vectorized).

Usage Description Comments Status Vector input
x | y, x & y logical OR (|) and AND(&) yes yes
!x logical not yes yes
x > y, x >= y greater than (and or equal to) yes yes
x < y, x <= y less than (and or equal to) yes yes
x != y, x == y (not) equals yes yes
x + y, x - y, x * y component-wise operators mix of scalar and vector yes yes
x / y component-wise division vector 𝑥 and scalar 𝑦 yes yes
x^y, pow(x, y) power 𝑥𝑦; vector 𝑥,scalar 𝑦 yes yes
x %% y modulo (remainder) yes no
min(x1, x2), min. (max.) of two scalars yes See pmin,
max(x1, x2) pmax
exp(x) exponential yes yes
log(x) natural logarithm yes yes
sqrt(x) square root yes yes
abs(x) absolute value yes yes
step(x) step function at 0 0 if 𝑥 < 0, 1 if 𝑥 >= 0 yes yes
equals(x, y) equality of two scalars 1 if 𝑥 == 𝑦, 0 if 𝑥! = 𝑦 yes yes
cube(x) third power 𝑥3 yes yes
sin(x), cos(x), trigonometric functions yes yes
tan(x)
asin(x), acos(x), inverse trigonometric functions yes yes
atan(x)
asinh(x), acosh(x), inv. hyperbolic trig. functions yes yes
atanh(x)
logit(x) logit log(𝑥/(1 − 𝑥)) yes yes
ilogit(x), expit(x) inverse logit exp(𝑥)/(1 + exp(𝑥)) yes yes
probit(x) probit (Gaussian quantile) Φ−1(𝑥) yes yes
iprobit(x), phi(x) inverse probit (Gaussian CDF) Φ(𝑥) yes yes
cloglog(x) complementary log log log(− log(1 − 𝑥)) yes yes
icloglog(x) inverse complementary log log 1 − exp(− exp(𝑥)) yes yes
ceiling(x) ceiling function ⌈(𝑥)⌉ yes yes
floor(x) floor function ⌊(𝑥)⌋ yes yes
round(x) round to integer yes yes
trunc(x) truncation to integer yes yes
lgamma(x), loggam(x) log gamma function log Γ(𝑥) yes yes
besselK(x, nu, modified bessel function returns vector even if yes yes
...expon.scaled) of the second kind 𝑥 a matrix/array
log1p(x) log of 1 + x log(1 + 𝑥) yes yes
lfactorial(x), log factorial log 𝑥! yes yes

140 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

Usage Description Comments Status Vector input
logfact(x)
qDIST(x, PARAMS) “q” distribution functions canonical parameterization yes yes
pDIST(x, PARAMS) “p” distribution functions canonical parameterization yes yes
rDIST(x, PARAMS) “r” distribution functions canonical parameterization yes yes
dDIST(x, PARAMS) “d” distribution functions canonical parameterization yes yes
sort(x) no
rank(x, s) no
ranked(x, s) no
order(x) no

Table 11.3: Functions operating on vectors and matrices. Sta-
tus column indicates if the function is currently provided in
NIMBLE.

Usage Description Comments Status
inverse(x) matrix inverse 𝑥 symmetric, positive def. yes
chol(x) matrix Cholesky factorization 𝑥 symmetric, positive def. yes

returns upper triang. matrix
t(x) matrix transpose 𝑥⊤ yes
x%*%y matrix multiply 𝑥𝑦; 𝑥, 𝑦 conformant yes
inprod(x, y) dot product 𝑥⊤𝑦; 𝑥 and 𝑦 vectors yes
solve(x,y) solve system of equations 𝑥−1𝑦; 𝑦 matrix or vector yes
forwardsolve(x, y) solve lower-triangular system of equations 𝑥−1𝑦; 𝑥 lower-triangular yes
backsolve(x, y) solve upper-triangular system of equations 𝑥−1𝑦; 𝑥 upper-triangular yes
logdet(x) log matrix determinant log |𝑥| yes
asRow(x) convert vector to 1-row matrix sometimes automatic yes
asCol(x) convert vector to 1-column matrix sometimes automatic yes
sum(x) sum of elements of x yes
mean(x) mean of elements of x yes
sd(x) standard deviation of elements of x yes
prod(x) product of elements of x yes
min(x), max(x) min. (max.) of elements of x yes
pmin(x, y), pmax(x,y) vector of mins (maxs) of elements of yes

x and y
interp.lin(x, v1, v2) linear interpolation no
eigen(x) matrix eigendecomposition; returns a 𝑥 symmetric yes

nimbleList of type eigenNimbleList
svd(x) matrix singular value decomposition; yes

returns a nimbleList of type
svdNimbleList

More information on the nimbleLists returned by the eigen and svd functions in NIMBLE can be
found in Section 14.2.2.

11.2. R FUNCTIONS (OR VARIANTS) IMPLEMENTED IN NIMBLE 141

11.2.4 Distribution functions

Distribution ‘d’, ‘r’, ‘p’, and ‘q’ functions can all be used from nimbleFunctions (and in BUGS
model code), but care is needed in the syntax, as follows.

• Names of the distributions generally (but not always) match those of R, which sometimes
differ from BUGS. See the list below.

• Supported parameterizations are also indicated in the list below.
• For multivariate distributions (multivariate normal, Dirichlet, and Wishart), ‘r’ functions only

return one random draw at a time, and the first argument must always be 1.
• R’s recycling rule (re-use of an argument as needed to accommodate longer values of other

arguments) is generally followed, but the returned object is always a scalar or a vector, not a
matrix or array.

As in R (and nimbleFunctions), arguments are matched by order or by name (if given). Standard
arguments to distribution functions in R (log, log.p, lower.tail) can be used and have the same
defaults. User-defined distributions for BUGS (Chapter 12) can also be used from nimbleFunctions.

For standard distributions, we rely on R’s regular help pages (e.g., help(dgamma). For distributions
unique to NIMBLE (e.g., dexp_nimble, ddirch), we provide help pages.

Supported distributions, listed by their ‘d’ function, include:

• dbinom(x, size, prob, log)
• dcat(x, prob, log)
• dmulti(x, size, prob, log)
• dnbinom(x, size, prob, log)
• dpois(x, lambda, log)
• dbeta(x, shape1, shape2, log)
• dchisq(x, df, log)
• ddexp(x, location, rate, log)
• ddexp(x, location, scale, log)

• dexp(x, rate, log)
• dexp_nimble(x, rate, log)
• dexp_nimble(x, scale, log)
• dgamma(x, shape, rate, log)
• dgamma(x, shape, scale, log)
• dinvgamma(x, shape, rate, log)
• dinvgamma(x, shape, scale, log)
• dlnorm(x, meanlog, sdlog, log)
• dlogis(x, location, scale, log)
• dnorm(x, mean, sd, log)
• dt_nonstandard(x, df, mu, sigma, log)
• dt(x, df, log)
• dunif(x, min, max, log)
• dweibull(x, shape, scale, log)
• ddirch(x, alpha, log)
• dlkj_corr_cholesky(x, shape, size, log)
• dmnorm_chol(x, mean, cholesky, prec_param, log)

142 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

• dmvt_chol(x, mu, cholesky, df, prec_param, log)
• dwish_chol(x, cholesky, df, scale_param, log)
• dinvwish_chol(x, cholesky, df, scale_param, log)

In the last three, cholesky stands for Cholesky decomposition of the relevant matrix; prec_param
is a logical indicating whether the Cholesky is of a precision matrix (TRUE) or covariance matrix
(FALSE)3; and scale_param is a logical indicating whether the Cholesky is of a scale matrix (TRUE)
or an inverse scale matrix (FALSE).

11.2.5 Flow control: if-then-else, for, while, and stop
These basic flow-control structures use the same syntax as in R. However, for-loops are limited to
sequential integer indexing. For example, for(i in 2:5) {...} works as it does in R. Decreasing
index sequences are not allowed. Unlike in R, if is not itself a function that returns a value.

We plan to include more flexible for-loops in the future, but for now we’ve included just
one additional useful feature: for(i in seq_along(NFL)) will work as in R, where NFL is a
nimbleFunctionList. This is described in Section 15.4.8.

stop, or equivalently nimStop, throws control to R’s error-handling system and can take a character
argument that will be displayed in an error message.

11.2.6 print and cat
print, or equivalently nimPrint, prints an arbitrary set of outputs in order and adds a newline
character at the end. cat or nimCat is identical, except without a newline at the end.

11.2.7 Checking for user interrupts: checkInterrupt
When you write algorithms that will run for a long time in C++, you may want to explicitly check
whether a user has tried to interrupt the execution (i.e., by pressing Control-C). Simply include
checkInterrupt in run code at places where a check should be done. If there has been an interrupt
waiting to be handled, the process will stop and return control to R.

11.2.8 Optimization: optim and nimOptim
NIMBLE provides a nimOptim function that partially implement’s R’s optim function with some
minor differences. nimOptim can use methods from R’s optim, including ‘Nelder-Mead’, ‘BFGS’,
‘CG’, ‘L-BFGS-B’, but it does not support methods ‘SANN’ and ‘Brent’. As of version 1.2.0, it
also allows users to provide their own optimization methods as R functions (although this feature
is subject to change in future versions). Support for R’s nlminb is provided in this way. NIM-
BLE’s nimOptim allows gradients to be supplied using user-provided functions if available or finite
differences otherwise. Currently nimOptim does not support extra parameters to the function being
optimized (via \dots), but a work-around is to create a new nimbleFunction that calls another
one with the additional parameters. Finally, nimOptim requires a nimbleList datatype for the
control parameter, whereas R’s optim uses a simple R list. To define the control parameter,
create a default value with the nimOptimDefaultControl function, and set any desired fields.

See help(nimOptim) for details, including example usage.
3For the multivariate t, these are more properly termed the ‘inverse scale’ and ‘scale’ matrices

11.2. R FUNCTIONS (OR VARIANTS) IMPLEMENTED IN NIMBLE 143

11.2.9 Integration: integrate and nimIntegrate

NIMBLE provides a nimIntegrate function that implement’s R’s integrate function, which car-
ries out adaptive Gauss-Kronrod quadrature to integrate a function of one variable over a finite or
infinite interval.

In addition to general use in a nimbleFunction, this can, of course, be used in a user-defined function
in model code, e.g., to implement models that involve an integral, such as certain point process
and survival models.

One could also consider using nimIntegrate to numerically integrate over a parameter in a model,
such as to remove a parameter that is not mixing well in an MCMC. Note that NIMBLE Laplace
approximation and adaptive Gauss-Hermite quadrature for integrating over continuous parameters
such as random effects. See section 16.2 and help(Laplace) for more information on those.

Here is an example of using nimIntegrate to implement a vectorized von Mises distribution.
integrand <- nimbleFunction(

run = function(x = double(1), theta = double(1)) {
return(exp(theta[1] * cos(x) + theta[2] * cos(2 * (x + theta[3]))))
returnType(double(1))

})

dGenVonMises <- nimbleFunction(
run = function(x = double(1), mu1 = double(), mu2 = double(),

kappa1 = double(), kappa2 = double(),
limits = double(1), log = integer(0, default = 0)){
range <- limits[2] - limits[1]
mu1R <- (mu1 - range/2)/range*2*pi
mu2R <- (mu2 - range/2)/range*2*pi
z <- (x - range/2)/range*2*pi
d <- (mu1R - mu2R) %% pi
num <- exp(kappa1 * cos(z - mu1R) + kappa2 * cos(2 * (z - mu2R)))
tmp <- c(kappa1, kappa2, d)
den <- nimIntegrate(integrand, lower = 0, upper = 2*pi, tmp)[1]
dens <- num/den
result <- dens*2*pi/range
if(log) {

return(log(result))
} else return(result)
returnType(double(1))

}
)

cgvonmises <- compileNimble(dGenVonMises)
x <- 0:360
plot(x, circular::dgenvonmises(circular(x, type = "angles", units = "degrees"), -1, 1, 2, 1))
plot(x, cgvonmises(x, mu1=20, mu2=300, kappa1=2, kappa2=1, limits = c(0, 360)), type = 'l')

144 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

11.2.10 ‘nim’ synonyms for some functions

NIMBLE uses some keywords, such as dim and print, in ways similar but not identical to R. In
addition, there are some keywords in NIMBLE that have the same names as R functions with
quite different functionality. For example, step is part of the BUGS language, but it is also an R
function for stepwise model selection. And equals is part of the BUGS language but is also used
in the testthat package, which we use in testing NIMBLE.

NIMBLE tries to avoid conflicts by replacing some keywords immediately upon creating a nimble-
Function. These replacements include

• c → nimC
• copy → nimCopy
• dim → nimDim
• print → nimPrint
• cat → nimCat
• step → nimStep
• equals → nimEquals
• rep → nimRep
• round → nimRound
• seq → nimSeq
• stop → nimStop
• switch → nimSwitch
• numeric, integer, logical → nimNumeric, nimInteger, nimLogical
• matrix, array → nimMatrix, nimArray
• optim → nimOptim
• integrate → nimIntegrate

This system gives programmers the choice between using the keywords like nimPrint directly, to
avoid confusion in their own code about which ‘print’ is being used, or to use the more intuitive
keywords like print but remember that they are not the same as R’s functions.

11.3 How NIMBLE handles types of variables

Variables in the NIMBLE language are statically typed. Once a variable is used for one type, it
can’t subsequently be used for a different type. This rule facilitates NIMBLE’s compilation to C++.
The NIMBLE compiler often determines types automatically, but sometimes the programmer needs
to explicitly provide them.

The elemental types supported by NIMBLE include double (floating-point), integer, logical, and
character. The type of a numeric or logical object refers to the number of dimensions and the
elemental type of the elements. Hence if x is created as a double matrix, it can only be used
subsequently for a double matrix. The size of each dimension is not part of its type and thus can
be changed. Up to four dimensions are supported for double, integer, and logical. Only vectors
(one dimension) are supported for character. Unlike R, NIMBLE supports true scalars, which have
0 dimensions.

11.3. HOW NIMBLE HANDLES TYPES OF VARIABLES 145

11.3.1 nimbleList data structures
A nimbleList is a data structure that can contain arbitrary other NIMBLE objects, including
other nimbleLists. Like other NIMBLE types, nimbleLists are strongly typed: each nimbleList
is created from a configuration that declares what types of objects it will hold. nimbleLists are
covered in Chapter 14.2.

11.3.2 How numeric types work
R’s dynamic types support easy programming because one type can sometimes be transformed
to another type automatically when an expression is evaluated. NIMBLE’s static types makes it
stricter than R.

11.3.2.1 When NIMBLE can automatically set a numeric type

When a variable is first created by assignment, its type is determined automatically by that assign-
ment. For example, if x has not appeared before, then
x <- A %*% B # assume A and B are double matrices or vectors

will create x to be a double matrix of the correct size (determined during execution).

11.3.2.1.1 Avoid changing types of a variable within a nimbleFunction Because NIM-
BLE is statically typed, you cannot use the same variable name for two objects of different types
(including objects of different dimensions).

Suppose we have (implicitly) created x as a double matrix. If x is used subsequently, it can only
be used as a double matrix. This is true even if it is assigned a new value, which will again set its
size automatically but cannot change its type.
x <- A %*% B # assume A and B are double matrices or vectors
x <- nimMatrix(0, nrow = 5, ncol = 2) # OK: 'x' is still a double matrix
x <- rnorm(10) # NOT OK: 'x' is a double vector

11.3.2.2 When a numeric object needs to be created before being used

If the contents of a variable are to be populated by assignment into some indices in steps, the
variable must be created first. Further, it must be large enough for its eventual contents; it will
not be automatically resized if assignments are made beyond its current size. For example, in the
following code, x must be created before being filled with contents for specific indices.
x <- numeric(10)

for(i in 1:10)
x[i] <- foo(y[i])

11.3.2.3 How NIMBLE handles NA

NIMBLE supports use of NA with some caveats. In the compiled version of a nimbleFunction:

• NA values in a logical scalar or vector will not work;

146 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

• Assigning NA to a new variable will make that variable have type double (in R, this would be
a logical!);

• Non-trivial use of NA in integer variables may fail by having the value become a large (negative)
number;

• Use of NA in doubles should generally work.

These issues arise because NIMBLE uses R’s encoding of NA values in C(++) but uses native
compiled math and type-casting in C++, which do not always preserve R’s NA encodings. In
summary, NA should generally work for doubles and should be used cautiously (i.e. after you
test that what you need to work actually works) for integers. For some needs, NaN is a suitable
alternative to NA.

11.3.2.4 Changing the sizes of existing objects: setSize

setSize changes the size of an object, preserving its contents in column-major order.
Example of creating and resizing a floating-point vector
myNumericVector will be of length 10, with all elements initialized to 2
myNumericVector <- numeric(10, value = 2)
resize this numeric vector to be length 20; last 10 elements will be 0
setSize(myNumericVector, 20)

Example of creating a 1-by-10 matrix with values 1:10 and resizing it
myMatrix <- matrix(1:10, nrow = 1, ncol = 10)
resize this matrix to be a 10-by-10 matrix
setSize(myMatrix, c(10, 10))
The first column will have the 1:10

11.3.2.5 Confusions between scalars and length-one vectors

In R, there is no such thing is a true scalar; scalars can always be treated as vectors of length one.
NIMBLE allows true scalars, which can create confusions. For example, consider the following
code:
myfun <- nimbleFunction(

run = function(i = integer()) { # i is an integer scalar
randomValues <- rnorm(10) # double vector
a <- randomValues[i] # double scalar
b <- randomValues[i:i] # double vector
d <- a + b # double vector
f <- c(i) # integer vector

})

In the line that creates b, the index range i:i is not evaluated until run time. Even though i:i
will always evaluate to simpy i, the compiler does not determine that. Since there is a vector index
range provided, the result of randomValues[i:i] is determined to be a vector. The following line
then creates d as a vector, because a vector plus a scalar returns a vector. Another way to create
a vector from a scalar is to use c, as illustrated in the last line.

11.3. HOW NIMBLE HANDLES TYPES OF VARIABLES 147

11.3.2.6 Confusions between vectors and one-column or one-row matrices

Consider the following code:
myfun <- nimbleFunction(

run = function() {
A <- matrix(value = rnorm(9), nrow = 3)
B <- rnorm(3)
Cmatrix <- A %*% B # double matrix, one column
Cvector <- (A %*% B)[,1] # double vector
Cmatrix <- (A %*% B)[,1] # error, vector assigned to matrix
Cmatrix[,1] <- (A %*% B)[,1] # ok, if Cmatrix is large enough

})

This creates a matrix A, a vector B, and matrix-multiplies them. The vector B is automatically
treated as a one-column matrix in matrix algebra computations. The result of matrix multiplication
is always a matrix, but a programmer may expect a vector, since they know the result will have
one column. To make it a vector, simply extract the first column. More information about such
handling is provided in the next section.

11.3.2.7 Understanding dimensions and sizes from linear algebra

As much as possible, NIMBLE behaves like R when determining types and sizes returned from linear
algebra expressions, but in some cases this is not possible because R uses run-time information while
NIMBLE must determine dimensions at compile time. For example, when matrix multiplying a
matrix by a vector, R treats the vector as a one-column matrix unless treating it as a one-row
matrix is the only way to make the expression valid, as determined at run time. NIMBLE usually
must assume during compilation that it should be a one-column matrix, unless it can determine
not just the number of dimensions but the actual sizes during compilation. When needed asRow
and asCol can control how a vector will be treated as a matrix.

Here is a guide to such issues. Suppose v1 and v2 are vectors, and M1 is a matrix. Then

• v1 + M1 promotes v1 to a 1-column matrix if M1 is a one-column matrix. Otherwise, this
results in a run-time error. This behavior occurs for all component-wise binary functions.

• v1 %*% M1 defaults to promoting v1 to a 1-row matrix, unless it is known at compile-time
that M1 has 1 row, in which case v1 is promoted to a 1-column matrix.

• M1 %*% v1 defaults to promoting v1 to a 1-column matrix, unless it is known at compile time
that M1 has 1 column, in which case v1 is promoted to a 1-row matrix.

• v1 %*% v2 promotes v1 to a 1-row matrix and v2 to a 1-column matrix, so the returned
values is a 1x1 matrix with the inner product of v1 and v2. If you want the inner product as
a scalar, use inprod(v1, v2).

• asRow(v1) explicitly promotes v1 to a 1-row matrix. Therefore v1 %*% asRow(v2) gives the
outer product of v1 and v2.

• asCol(v1) explicitly promotes v1 to a 1-column matrix.

• The default promotion for a vector is to a 1-column matrix. Therefore, v1 %*% t(v2) is
equivalent to v1 %*% asRow(v2) .

• When indexing, dimensions with scalar indices will be dropped. For example, M1[1,] and
M1[,1] are both vectors. If you do not want this behavior, use drop=FALSE just as in R. For

148 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

example, M1[1,,drop=FALSE] is a matrix.
• The left-hand side of an assignment can use indexing, but if so it must already be correctly

sized for the result. For example, Y[5:10, 20:30] <- x will not work – and could crash
your R session with a segmentation fault – if Y is not already at least 10x30 in size. This
can be done by setSize(Y, c(10, 30)). See Section 11.3.2.4 for more details. Note that
non-indexed assignment to Y, such as Y <- x, will automatically set Y to the necessary size.

Here are some examples to illustrate the above points, assuming M2 is a square matrix.

• Y <- v1 + M2 %*% v2 will return a 1-column matrix. If Y is created by this statement, it
will be a 2-dimensional variable. If Y already exists, it must already be 2-dimesional, and it
will be automatically re-sized for the result.

• Y <- v1 + (M2 %*% v2)[,1] will return a vector. Y will either be created as a vector or
must already exist as a vector and will be re-sized for the result.

11.3.2.8 Size warnings and the potential for crashes

For matrix algebra, NIMBLE cannot ensure perfect behavior because sizes are not known until run
time. Therefore, it is possible for you to write code that will crash your R session. In Version 1.2.1,
NIMBLE attempts to issue a warning if sizes are not compatible, but it does not halt execution.
Therefore, if you execute A <- M1 %*% M2, and M1 and M2 are not compatible for matrix multipli-
cation, NIMBLE will output a warning that the number of rows of M1 does not match the number
of columns of M2. After that warning the statement will be executed and may result in a crash.
Another easy way to write code that will crash is to do things like Y[5:10, 20:30] <- x without
ensuring Y is at least 10x30. In the future we hope to prevent crashes, but in Version 1.2.1 we limit
ourselves to trying to provide useful information.

11.4 Declaring argument and return types
NIMBLE requires that types of arguments and the type of the return value be explicitly declared.

As illustrated in the example in Section 11.1, the syntax for a type declaration is:

type(nDim, sizes)

where type is double, integer, logical or character. (In more general nimbleFunction program-
ming, a type can also be a nimbleList type, discussed in Section 14.2.)

For example run = function(x = double(1)) { ...} sets the single argument of the run func-
tion to be a vector of numeric values of unknown size.

For type(nDim, sizes), nDim is the number of dimensions, with 0 indicating scalar and omission
of nDim defaulting to a scalar. sizes is an optional vector of fixed, known sizes.
For example, double(2, c(4, 5)) declares a 4 × 5 matrix. If sizes are omitted, they will be set
either by assignment or by setSize.

In the case of scalar arguments only, a default value can be provided. For example, to provide 1.2
as a default:
myfun <- nimbleFunction(

run = function(x = double(0, default = 1.2)) {
})

11.5. COMPILED NIMBLEFUNCTIONS PASS ARGUMENTS BY REFERENCE 149

Functions with return values must have their return type explicitly declared using returnType,
which can occur anywhere in the run code. For example returnType(integer(2)) declares the
return type to be a matrix of integers. A return type of void() means there is no return value,
which is the default if no returnType statement is included.

Note that because all values in models are stored as doubles and because of some limitations
in NIMBLE’s automatic casting, non-scalar return values of user-defined distributions must be
doubles.

11.5 Compiled nimbleFunctions pass arguments by reference
Uncompiled nimbleFunctions pass arguments like R does, by copy. If x is passed as an argument
to function foo, and foo modifies x internally, it is modifying its copy of x, not the original x that
was passed to it.

Compiled nimbleFunctions pass arguments to other compiled nimbleFunctions by reference (or
pointer). This is very different. Now if foo modifies x internally, it is modifying the same x that
was passed to it. This allows much faster execution but is obviously a fundamentally different
behavior.

Uncompiled execution of nimbleFunctions is primarily intended for debugging. However, debugging
of how nimbleFunctions interact via arguments requires testing the compiled versions.

11.6 Calling external compiled code
If you have a function in your own compiled C or C++ code and an appropriate header file, you
can generate a nimbleFunction that wraps access to that function, which can then be used in other
nimbleFunctions. See help(nimbleExternalCall) for an example. This also contains an example
of using an externally compiled function in the BUGS code of a model.

11.7 Calling uncompiled R functions from compiled nimbleFunc-
tions

Sometimes one may want to combine R functions with compiled nimbleFunctions. Obviously a
compiled nimbleFunction can be called from R. An R function with numeric inputs and output can
be called from compiled nimbleFunctions. The call to the R function is wrapped in a nimbleFunction
returned by nimbleRcall. See help(nimbleRcall) for an example, including an example of using
the resulting function in the BUGS code of a model.

150 CHAPTER 11. WRITING SIMPLE NIMBLEFUNCTIONS

Chapter 12

Creating user-defined distributions
and functions for models

NIMBLE allows you to define your own functions and distributions as nimbleFunctions for use
in model code. As a result, NIMBLE frees you from being constrained to the functions and
distributions discussed in Chapter 5. For example, instead of setting up a Dirichlet prior with
multinomial data and needing to use MCMC, one could recognize that this results in a Dirichlet-
multinomial distribution for the data and provide that as a user-defined distribution instead.

Since NIMBLE allows you to wrap calls to external compiled code or arbitrary R functions as
nimbleFunctions, and since you can define model functions and distributions as nimbleFunctions,
you can combine these features to build external compiled code or arbitrary R functions into a
model. See Sections 11.6-11.7.

As of version 1.2.0, NIMBLE also supports using more advanced nimbleFunctions, those with setup
code and possibly multiple methods (see Chapter 15), to provide functions and/or distributions for
use in models. This allows the functions and/or distributions to store information internally. See
section 12.3 below.

Note that NIMBLE generally expects user-defined distributions or functions to be defined in the
global environment. If you define them in a function (which would generally be the case if you are
using them in the context of parallelization), one approach would be to assign them to the global
environment in your function:
for a user-defined function
assign('myfun', myfun, envir = .GlobalEnv)
for a user-defined distribution
assign('dfoo', dfoo, envir = .GlobalEnv)
assign('rfoo', rfoo, envir = .GlobalEnv)
similarly for 'p' and 'q' functions if you define them

12.1 User-defined functions
To provide a new function for use in BUGS code, simply create a nimbleFunction as discussed in
Chapter 11. Then use it in your BUGS code. That’s it.

151

152CHAPTER 12. CREATING USER-DEFINED DISTRIBUTIONS AND FUNCTIONS FOR MODELS

Writing nimbleFunctions requires that you declare the dimensionality of arguments and the returned
object (Section 11.4). Make sure that the dimensionality specified in your nimbleFunction matches
how you use it in BUGS code. For example, if you define scalar parameters in your BUGS code you
will want to define nimbleFunctions that take scalar arguments. Here is an example that returns
twice its input argument:
timesTwo <- nimbleFunction(

run = function(x = double(0)) {
returnType(double(0))
return(2*x)

})

code <- nimbleCode({
for(i in 1:3) {

mu[i] ~ dnorm(0, 1)
mu_times_two[i] <- timesTwo(mu[i])

}
})

The x = double(0) argument and returnType(double(0)) establish that the input and output
will both be zero-dimensional (scalar) numbers.

You can define nimbleFunctions that take inputs and outputs with more dimensions. Here is an
example that takes a vector (1-dimensional) as input and returns a vector with twice the input
values:
vectorTimesTwo <- nimbleFunction(

run = function(x = double(1)) {
returnType(double(1))
return(2*x)

}
)

code <- nimbleCode({
for(i in 1:3) {

mu[i] ~ dnorm(0, 1)
}
mu_times_two[1:3] <- vectorTimesTwo(mu[1:3])

})

There is a subtle difference between the mu_times_two variables in the two examples. In the first
example, there are individual nodes for each mu_times_two[i]. In the second example, there is
a single multivariate node, mu_times_two[1:3]. Each implementation could be more efficient for
different needs. For example, suppose an algorithm modifies the value of mu[2] and then updates
nodes that depend on it. In the first example, mu_times_two[2] would be updated. In the second
example mu_times_two[1:3] would be updated because it is a single, vector node.

At present in compiled use of a model, you cannot provide a scalar argument where the user-defined
nimbleFunction expects a vector; unlike in R, scalars are not simply vectors of length 1.

12.2. USER-DEFINED DISTRIBUTIONS 153

12.2 User-defined distributions
To provide a user-defined distribution, you need to define density (‘d’) and (optionally) simulation
(‘r’) nimbleFunctions for your distribution. In many cases you can then simply use your distri-
bution in BUGS code as you would any distribution already provided by NIMBLE, while in a few
special cases1 you need to explicitly register your distribution as described in Section 12.2.1.

You need to provide the simulation (‘r’) function if any algorithm used with a model that uses
the distribution needs to simulate from the distribution. This is not the case for NIMBLE’s built-
in MCMC sampler functions, and therefore the simulation function is not generally required for
standard MCMC in NIMBLE. However, the ‘r’ function is necessary for initialization of nodes
that are assigned the user-defined distribution if no initial value is provided, and for sampling
posterior predictive nodes (those nodes with no downstream data dependencies) that are assigned
the user-defined distribution.

You can optionally provide distribution (‘p’) and quantile (‘q’) functions, which will allow trun-
cation to be applied to a user-defined distribution. You can also provide a list of alternative
parameterizations, but only if you explicitly register the distribution.

Here is an extended example of providing a univariate exponential distribution (solely for illustration
as this is already provided by NIMBLE) and a multivariate Dirichlet-multinomial distribution.
dmyexp <- nimbleFunction(

run = function(x = double(0), rate = double(0, default = 1),
log = integer(0, default = 0)) {
returnType(double(0))
logProb <- log(rate) - x*rate
if(log) return(logProb)
else return(exp(logProb))

})

rmyexp <- nimbleFunction(
run = function(n = integer(0), rate = double(0, default = 1)) {

returnType(double(0))
if(n != 1) print("rmyexp only allows n = 1; using n = 1.")
dev <- runif(1, 0, 1)
return(-log(1-dev) / rate)

})

pmyexp <- nimbleFunction(
run = function(q = double(0), rate = double(0, default = 1),

lower.tail = integer(0, default = 1),
log.p = integer(0, default = 0)) {
returnType(double(0))
if(!lower.tail) {

logp <- -rate * q
if(log.p) return(logp)

1These include providing alternative parameterizations, specifying the range of the distribution, or specifying that
the distribution is a discrete distribution.

154CHAPTER 12. CREATING USER-DEFINED DISTRIBUTIONS AND FUNCTIONS FOR MODELS

else return(exp(logp))
} else {

p <- 1 - exp(-rate * q)
if(!log.p) return(p)
else return(log(p))

}
})

qmyexp <- nimbleFunction(
run = function(p = double(0), rate = double(0, default = 1),

lower.tail = integer(0, default = 1),
log.p = integer(0, default = 0)) {
returnType(double(0))
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1 - p
return(-log(1 - p) / rate)

})

ddirchmulti <- nimbleFunction(
run = function(x = double(1), alpha = double(1), size = double(0),

log = integer(0, default = 0)) {
returnType(double(0))
logProb <- lgamma(size+1) - sum(lgamma(x+1)) + lgamma(sum(alpha)) -

sum(lgamma(alpha)) + sum(lgamma(alpha + x)) -
lgamma(sum(alpha) + size)

if(log) return(logProb)
else return(exp(logProb))

})

rdirchmulti <- nimbleFunction(
run = function(n = integer(0), alpha = double(1), size = double(0)) {

returnType(double(1))
if(n != 1) print("rdirchmulti only allows n = 1; using n = 1.")
p <- rdirch(1, alpha)
return(rmulti(1, size = size, prob = p))

})

code <- nimbleCode({
y[1:K] ~ ddirchmulti(alpha[1:K], n)
for(i in 1:K) {

alpha[i] ~ dmyexp(1/3)
}

})

model <- nimbleModel(code, constants = list(K = 5, n = 10))

The distribution-related functions should take as input the parameters for a single parameterization,

12.2. USER-DEFINED DISTRIBUTIONS 155

which will be the canonical parameterization that NIMBLE will use.

Here are more details on the requirements for distribution-related nimbleFunctions, which follow
R’s conventions:

• Your distribution-related functions must have names that begin with ‘d’, ‘r’, ‘p’ and ‘q’. The
name of the distribution must not be identical to any of the NIMBLE-provided distributions.

• All simulation (‘r’) functions must take n as their first argument. Note that you may simply
have your function only handle n=1 and return an warning for other values of n.

• NIMBLE uses doubles for numerical calculations, so we suggest simply using doubles in
general, even for integer-valued parameters or values of random variables. In fact, non-scalars
must be declared as doubles.

• All density functions must have as their last argument log and implement return of the log
probability density. NIMBLE algorithms typically use only log = 1 (i.e., TRUE), but we
recommend you implement the log = 0 (i.e., FALSE) case for completeness.

• All distribution and quantile functions must have their last two arguments be (in order)
lower.tail and log.p. These functions must work for lower.tail = 1 (i.e., TRUE) and
log.p = 0 (i.e., FALSE), as these are the inputs we use when working with truncated dis-
tributions. It is your choice whether you implement the necessary calculations for other
combinations of these inputs, but again we recommend doing so for completeness.

• Define the nimbleFunctions in R’s global environment. Don’t expect R’s standard scoping to
work2.

12.2.1 Using registerDistributions for alternative parameterizations and pro-
viding other information

Behind the scenes, NIMBLE uses the function registerDistributions to set up new distributions
for use in BUGS code. In some circumstances, you will need to call registerDistributions
directly to provide information that NIMBLE can’t obtain automatically from the nimbleFunctions
you write.

The cases in which you’ll need to explicitly call registerDistributions are when you want to do
any of the following:

• provide alternative parameterizations,
• indicate a distribution is discrete, and
• provide the range of possible values for a distribution.

If you would like to allow for multiple parameterizations, you can do this via the Rdist element
of the list provided to registerDistributions as illustrated below. If you provide CDF (‘p’)
and inverse CDF (quantile, i.e. ‘q’) functions, be sure to specify pqAvail = TRUE when you call
registerDistributions. Here’s an example of using registerDistributions to provide an al-
ternative parameterization (scale instead of rate) and to provide the range for the user-defined
exponential distribution. We can then use the alternative parameterization in our BUGS code.
registerDistributions(list(

dmyexp = list(
BUGSdist = "dmyexp(rate, scale)",
Rdist = "dmyexp(rate = 1/scale)",

2NIMBLE can’t use R’s standard scoping because it doesn’t work for R reference classes, and nimbleFunctions
are implemented as custom-generated reference classes.

156CHAPTER 12. CREATING USER-DEFINED DISTRIBUTIONS AND FUNCTIONS FOR MODELS

altParams = c("scale = 1/rate", "mean = 1/rate"),
pqAvail = TRUE,
range = c(0, Inf)
)

))

code <- nimbleCode({
y[1:K] ~ ddirchmulti(alpha[1:K], n)
for(i in 1:K) {

alpha[i] ~ T(dmyexp(scale = 3), 0, 100)
}

})

model <- nimbleModel(code, constants = list(K = 5, n = 10),
inits = list(alpha = rep(1, 5)))

There are a few rules for how you specify the information about a distribution that you provide to
registerDistributions:

• The function name in the BUGSdist entry in the list provided to registerDistributions
will be the name you can use in BUGS code.

• The names of your nimbleFunctions must match the function name in the Rdist entry. If
missing, the Rdist entry defaults to be the same as the BUGSdist entry.

• Your distribution-related functions must take as arguments the parameters in default order,
starting as the second argument and in the order used in the parameterizations in the Rdist
argument to registerDistributions or the BUGSdist argument if there are no alternative
parameterizations.

• You must specify a types entry in the list provided to registerDistributions if the distri-
bution is multivariate or if any parameter is non-scalar.

Further details on using registerDistributions can be found via R help on registerDistributions.
NIMBLE uses the same list format as registerDistributions to define its distributions. This
list can be found in the R/distributions_inputList.R file in the package source code directory
or as the R list nimble:::distributionsInputList.

12.3 Advanced user-defined functions and distributions
Sometimes it is useful for a user-defined function or distribution to use external information and/or
hold variables that persist between calls. One can do this by creating nimbleFunctions that use
setup code and have one or more methods. If you are familiar with object-oriented programming,
this variety of nimbleFunction defines a class. Here we will give a toy example that is not fully
explained because the NIMBLE programming concepts are covered in Chapter 15. After studying
that chapter, the example here should make more sense.

As a toy example, consider this basic linear regression model with one explanatory variable:
code <- nimbleCode({

beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)

12.3. ADVANCED USER-DEFINED FUNCTIONS AND DISTRIBUTIONS 157

sigma ~ dhalfflat()
for(i in 1:n) {
y[i] ~ dnorm(beta0 + beta1*x[i], sd = sigma)

}
})
Simulate some data:
x <- runif(10)
y <- rnorm(10, 3 + 0.5 * x, sd = 0.2)
model <- nimbleModel(code, constants = list(n = 10, x = x),

data = list(y = y),
inits = list(beta0=3.1,beta1=0.4,sigma=0.3))

Now suppose we want to rewrite this model in an equivalent way by providing a “distribution” that
actually contains all the steps to calculate the log likelihood for the linear regression internally (for
all of y[1:10] at once), including that it contains the explanatory variable x. We could do that as
follows:
nimbleOptions(allowNFobjInModel=TRUE) # This option should be TRUE by default,

but we include this step to be sure.
linear_reg <- nimbleFunction(

setup = function(predictor) {}, # Call x "predictor" here for clarity
methods = list(
dcalc = function(x = double(1), # Note that this will be y!

beta0=double(), beta1=double(), sigma=double(),
log=integer(0, default=0)) {

llh <- sum(dnorm(x, beta0+beta1*predictor, sd=sigma, log=TRUE))
if(log) return(llh)
return(exp(llh))
returnType(double())

}))
my_linear_reg <- linear_reg(x)
code2 <- nimbleCode({

beta0 ~ dnorm(0, sd = 100)
beta1 ~ dnorm(0, sd = 100)
sigma ~ dhalfflat()
y[1:n] ~ my_linear_reg$dcalc(beta0, beta1, sigma)

})
model <- nimbleModel(code2, constants = list(n = 10),

data = list(y = y),
inits = list(beta0=3.1,beta1=0.4,sigma=0.3))

What is going on, and why would one even think of doing it this way? linear_reg here is defined
as a nimbleFunction to create objects that will hold values of x internally and use them when the
dcalc function (or “method”) is called. my_linear_reg is one instance of linear_reg that holds
the specific values of x provided. The method dcalc has the format (arguments, return type, and
prefix “d”) of a user-defined distribution, so it can be used that way via my_linear_reg$dcalc.
One can provide a corresponding rcalc method, but as above this is only required if it will actually
be needed by an algorithm. The suffix “calc” could be replaced with anything, but a user-defined

158CHAPTER 12. CREATING USER-DEFINED DISTRIBUTIONS AND FUNCTIONS FOR MODELS

distribution must have the prefix “d” (and can even be named just “d”), and a corresponding
simulation must begin with “r”. Any method in an object like my_linear_reg can be used as a
user-defined function, and the same nimbleFunction (linear_reg) can define multiple user-defined
functions and/or distributions.

(Note the deliberate illustration of a potential confusion: The random variable argument to a user-
defined distribution is always named “x”, which in this example will get the values of y[1:10].)

Now, why would one want to do this? There are several reasons. First, sometimes instead of a
short vector like x, there may be quite large data objects involved in some calculation. It can be
wasteful (of time and memory when building and compiling models) to provide large objects in
models for the sole purpose of passing them to user-defined functions or distributions. It can work
well to access them internally as shown with x in this example. One can also consider caching
intermediate values from costly calculations or other tricks to speed up calculations.

It is vital when using this approach to understand clearly how an algorithm will use a model,
and there is potential to create problems. For example, NIMBLE’s MCMC system uses a set of
samplers, each of which assumes the model is fully up-to-date when it begins its operations. “Up-
to-date” means that model variables all have the correct current values and all deterministic and
stochastic calculations are up-to-date with those values. Sometimes, samplers copy values around
to achieve this. However, a sampler has no way to know what variables a nimbleFunction object
(e.g. my_linear_reg) is managing internally, and thus has no way to keep them up to date, if
necessary. Techniques such as caching or “memoization” should be careful in this regard.

One can also register a distribution in a nimbleFunction object manually, for the reasons given
above. The name of the distribution is simply the string “my_linear_reg$dcalc”, to use the current
example.

Chapter 13

Working with NIMBLE models

Here we describe how one can get information about NIMBLE models and carry out operations on
a model. While all of this functionality can be used from R, its primary use occurs when writing
nimbleFunctions (see Chapter 15). Information about node types, distributions, and dimensions
can be used to determine algorithm behavior in setup code of nimbleFunctions. Information about
node or variable values or the parameter and bound values of a node would generally be used for
algorithm calculations in run code of nimbleFunctions. Similarly, carrying out numerical operations
on a model, including setting node or variable values, would generally be done in run code.

13.1 The variables and nodes in a NIMBLE model
Section 6.2 defines what we mean by variables and nodes in a NIMBLE model and discusses how to
determine and access the nodes in a model and their dependency relationships. Here we’ll review
and go into more detail on the topics of determining the nodes and node dependencies in a model.

13.1.1 Determining the nodes in a model
One can determine the variables in a model using getVarNames and the nodes in a model using
getNodeNames, with optional arguments allowing you to select only certain types of nodes. We
illustrate here with the pump model from Chapter 2.
pump$getVarNames()

[1] "lifted_d1_over_beta" "theta" "lambda"
[4] "x" "alpha" "beta"
pump$getNodeNames()

[1] "alpha" "beta" "lifted_d1_over_beta"
[4] "theta[1]" "theta[2]" "theta[3]"
[7] "theta[4]" "theta[5]" "theta[6]"
[10] "theta[7]" "theta[8]" "theta[9]"
[13] "theta[10]" "lambda[1]" "lambda[2]"
[16] "lambda[3]" "lambda[4]" "lambda[5]"
[19] "lambda[6]" "lambda[7]" "lambda[8]"

159

160 CHAPTER 13. WORKING WITH NIMBLE MODELS

[22] "lambda[9]" "lambda[10]" "x[1]"
[25] "x[2]" "x[3]" "x[4]"
[28] "x[5]" "x[6]" "x[7]"
[31] "x[8]" "x[9]" "x[10]"
pump$getNodeNames(determOnly = TRUE)

[1] "lifted_d1_over_beta" "lambda[1]" "lambda[2]"
[4] "lambda[3]" "lambda[4]" "lambda[5]"
[7] "lambda[6]" "lambda[7]" "lambda[8]"
[10] "lambda[9]" "lambda[10]"
pump$getNodeNames(stochOnly = TRUE)

[1] "alpha" "beta" "theta[1]" "theta[2]" "theta[3]" "theta[4]"
[7] "theta[5]" "theta[6]" "theta[7]" "theta[8]" "theta[9]" "theta[10]"
[13] "x[1]" "x[2]" "x[3]" "x[4]" "x[5]" "x[6]"
[19] "x[7]" "x[8]" "x[9]" "x[10]"
pump$getNodeNames(dataOnly = TRUE)

[1] "x[1]" "x[2]" "x[3]" "x[4]" "x[5]" "x[6]" "x[7]" "x[8]" "x[9]"
[10] "x[10]"

You can see one lifted node (see next section), lifted_d1_over_beta, involved in a reparameteri-
zation to NIMBLE’s canonical parameterization of the gamma distribution for the theta nodes.

We can determine the set of nodes contained in one or more nodes or variables us-
ing expandNodeNames, illustrated here for an example with multivariate nodes. The
returnScalarComponents argument also allows us to return all of the scalar elements of
multivariate nodes.
multiVarCode2 <- nimbleCode({

X[1, 1:5] ~ dmnorm(mu[], cov[,])
X[6:10, 3] ~ dmnorm(mu[], cov[,])
for(i in 1:4)

Y[i] ~ dnorm(mn, 1)
})

multiVarModel2 <- nimbleModel(multiVarCode2,
dimensions = list(mu = 5, cov = c(5,5)),
calculate = FALSE)

multiVarModel2$expandNodeNames("Y")

[1] "Y[1]" "Y[2]" "Y[3]" "Y[4]"
multiVarModel2$expandNodeNames(c("X", "Y"), returnScalarComponents = TRUE)

[1] "X[1, 1]" "X[1, 2]" "X[1, 3]" "X[6, 3]" "X[7, 3]" "X[8, 3]"
[7] "X[9, 3]" "X[10, 3]" "X[1, 4]" "X[1, 5]" "Y[1]" "Y[2]"

13.1. THE VARIABLES AND NODES IN A NIMBLE MODEL 161

[13] "Y[3]" "Y[4]"

As discussed in Section 6.2.6, you can determine whether a node is flagged as data using isData.

13.1.2 Understanding lifted nodes
In some cases, NIMBLE introduces new nodes into the model that were not specified in the BUGS
code for the model, such as the lifted_d1_over_beta node in the introductory example. For this
reason, it is important that programs written to adapt to different model structures use NIMBLE’s
systems for querying the model graph. For example, a call to pump$getDependencies("beta")
will correctly include lifted_d1_over_beta in the results. If one skips this step and assumes the
nodes are only those that appear in the BUGS code, one may not get correct results.

It can be helpful to know the situations in which lifted nodes are generated. These include:

1. When distribution parameters are expressions, NIMBLE creates a new deterministic node
that contains the expression for a given parameter. The node is then a direct descendant
of the new deterministic node. This is an optional feature, but it is currently enabled in all
cases.

2. As discussed in Section 5.2.6, the use of link functions causes new nodes to be introduced.
This requires care if you need to initialize values in stochastic declarations with link functions.

3. Use of alternative parameterizations of distributions, described in Section 5.2.4 causes new
nodes to be introduced. For example when a user provides the precision of a normal distri-
bution as tau, NIMBLE creates a new node sd <- 1/sqrt(tau) and uses sd as a parameter
in the normal distribution. If many nodes use the same tau, only one new sd node will be
created, so the computation 1/sqrt(tau) will not be repeated redundantly.

13.1.3 Determining dependencies in a model
Next we’ll see how to determine the node dependencies (or ‘descendants’ or child nodes) in a model.
There are a variety of arguments to getDependencies that allow one to specify whether to include
the node itself, whether to include deterministic or stochastic or data dependents, etc. By default
getDependencies returns descendants up to the next stochastic node on all edges emanating from
the node(s) specified as input. This is what would be needed to calculate a Metropolis-Hastings
acceptance probability in MCMC, for example.
pump$getDependencies("alpha")

[1] "alpha" "theta[1]" "theta[2]" "theta[3]" "theta[4]" "theta[5]"
[7] "theta[6]" "theta[7]" "theta[8]" "theta[9]" "theta[10]"
pump$getDependencies(c("alpha", "beta"))

[1] "alpha" "beta" "lifted_d1_over_beta"
[4] "theta[1]" "theta[2]" "theta[3]"
[7] "theta[4]" "theta[5]" "theta[6]"
[10] "theta[7]" "theta[8]" "theta[9]"
[13] "theta[10]"
pump$getDependencies("theta[1:3]", self = FALSE)

[1] "lambda[1]" "lambda[2]" "lambda[3]" "x[1]" "x[2]" "x[3]"

162 CHAPTER 13. WORKING WITH NIMBLE MODELS

pump$getDependencies("theta[1:3]", stochOnly = TRUE, self = FALSE)

[1] "x[1]" "x[2]" "x[3]"
get all dependencies, not just the direct descendants
pump$getDependencies("alpha", downstream = TRUE)

[1] "alpha" "theta[1]" "theta[2]" "theta[3]" "theta[4]"
[6] "theta[5]" "theta[6]" "theta[7]" "theta[8]" "theta[9]"
[11] "theta[10]" "lambda[1]" "lambda[2]" "lambda[3]" "lambda[4]"
[16] "lambda[5]" "lambda[6]" "lambda[7]" "lambda[8]" "lambda[9]"
[21] "lambda[10]" "x[1]" "x[2]" "x[3]" "x[4]"
[26] "x[5]" "x[6]" "x[7]" "x[8]" "x[9]"
[31] "x[10]"
pump$getDependencies("alpha", downstream = TRUE, dataOnly = TRUE)

[1] "x[1]" "x[2]" "x[3]" "x[4]" "x[5]" "x[6]" "x[7]" "x[8]" "x[9]"
[10] "x[10]"

In addition, one can determine parent nodes using getParents.
pump$getParents("alpha")

character(0)

13.2 Accessing information about nodes and variables
13.2.1 Getting distributional information about a node
We briefly demonstrate some of the functionality for information about a node here, but refer
readers to the R help on modelBaseClass for full details.

Here is an example model, with use of various functions to determine information about nodes or
variables.
code <- nimbleCode({

for(i in 1:4)
y[i] ~ dnorm(mu, sd = sigma)

mu ~ T(dnorm(0, 5), -20, 20)
sigma ~ dunif(0, 10)
})

m <- nimbleModel(code, data = list(y = rnorm(4)),
inits = list(mu = 0, sigma = 1))

m$isEndNode('y')

y[1] y[2] y[3] y[4]
TRUE TRUE TRUE TRUE
m$getDistribution('sigma')

sigma

13.2. ACCESSING INFORMATION ABOUT NODES AND VARIABLES 163

"dunif"
m$isDiscrete(c('y', 'mu', 'sigma'))

y[1] y[2] y[3] y[4] mu sigma
FALSE FALSE FALSE FALSE FALSE FALSE
m$isDeterm('mu')

mu
FALSE
m$getDimension('mu')

value
0
m$getDimension('mu', includeParams = TRUE)

value mean sd tau var
0 0 0 0 0

Note that any variables provided to these functions are expanded into their constituent node names,
so the length of results may not be the same length as the input vector of node and variable names.
However the order of the results should be preserved relative to the order of the inputs, once the
expansion is accounted for.

13.2.2 Getting information about a distribution
One can also get generic information about a distribution based on the name of the distribution
using the function getDistributionInfo. In particular, one can determine whether a distribution
was provided by the user (isUserDefined), whether a distribution provides CDF and quantile
functions (pqDefined), whether a distribution is a discrete distribution (isDiscrete), the param-
eter names (include alternative parameterizations) for a distribution (getParamNames), and the
dimension of the distribution and its parameters (getDimension). For more extensive information,
please see the R help for getDistributionInfo.

13.2.3 Getting distribution parameter values for a node
The function getParam provides access to values of the parameters of a node’s distribution. The two
arguments must be the name of one (stochastic) node and the name of a parameter for the distribu-
tion followed by that node. The parameter does not have to be one of the parameters used when the
node was declared. Alternative parameterization values can also be obtained. See Section 5.2.4.1
for available parameterizations. (These can also be seen in nimble:::distributionsInputList.)

Here is an example:
gammaModel <- nimbleModel(

nimbleCode({
a ~ dlnorm(0, 1)
x ~ dgamma(shape = 2, scale = a)

}), data = list(x = 2.4), inits = list(a = 1.2))
gammaModel$getParam('x', 'scale')

164 CHAPTER 13. WORKING WITH NIMBLE MODELS

[1] 1.2
gammaModel$getParam('x', 'rate')

[1] 0.8333333

getParam is part of the NIMBLE language, so it can be used in run code of nimbleFunctions.

13.2.4 Getting distribution bounds for a node

The function getBound provides access to the lower and upper bounds of the distribution for a node.
In most cases these bounds will be fixed based on the distribution, but for the uniform distribution
the bounds are the parameters of the distribution, and when truncation is used (Section 5.2.7),
the bounds will be determined by the truncation. Like the functions described in the previous
section, getBound can be used as global function taking a model as the first argument, or it can be
used as a model member function. The next two arguments must be the name of one (stochastic)
node and either "lower" or "upper" indicating whether the lower or upper bound is desired. For
multivariate nodes the bound is a scalar that is the bound for all elements of the node, as we do
not handle truncation for multivariate nodes.

Here is an example:
exampleModel <- nimbleModel(

nimbleCode({
y ~ T(dnorm(mu, sd = sig), a, Inf)
a ~ dunif(-1, b)
b ~ dgamma(1, 1)

}), inits = list(a = -0.5, mu = 1, sig = 1, b = 4),
data = list(y = 4))

getBound(exampleModel, 'y', 'lower')

[1] -0.5
getBound(exampleModel, 'y', 'upper')

[1] Inf
exampleModel$b <- 3
exampleModel$calculate(exampleModel$getDependencies('b'))

[1] -4.386294
getBound(exampleModel, 'a', 'upper')

[1] 3
exampleModel$getBound('b','lower')

[1] 0

getBound is part of the NIMBLE language, so it can be used in run code of nimbleFunctions. In
fact, we anticipate that most use of getBound will be for algorithms, such as for the reflection
version of the random walk MCMC sampler.

13.3. CARRYING OUT MODEL CALCULATIONS 165

13.3 Carrying out model calculations
13.3.1 Core model operations: calculation and simulation
The four basic ways to operate a model are to calculate nodes, simulate into nodes, get the log
probabilities (or probability densities) that have already been calculated, and compare the log
probability of a new value to that of an old value. In more detail:

• calculate For a stochastic node, calculate determines the log probability value, stores it
in the appropriate logProb variable, and returns it. For a deterministic node, calculate
executes the deterministic calculation and returns 0.

• simulate For a stochastic node, simulate generates a random draw. For deterministic nodes,
simulate is equivalent to calculate without returning 0. simulate always returns NULL (or
void in C++).

• getLogProb getLogProb simply returns the most recently calculated log probability value,
or 0 for a deterministic node.

• calculateDiff calculateDiff is identical to calculate, but it returns the new log prob-
ability value minus the one that was previously stored. This is useful when one wants to
change the value or values of node(s) in the model (e.g., by setting a value or simulate) and
then determine the change in the log probability, such as needed for a Metropolis-Hastings
acceptance probability.

Each of these functions is accessed as a member function of a model object, taking a vector of node
names as an argument1. If there is more than one node name, calculate and getLogProb return
the sum of the log probabilities from each node, while calculateDiff returns the sum of the new
values minus the old values. Next we show an example using simulate.

13.3.1.1 Example: simulating arbitrary collections of nodes

mc <- nimbleCode({
a ~ dnorm(0, 0.001)
for(i in 1:5) {

y[i] ~ dnorm(a, 0.1)
for(j in 1:3)

z[i,j] ~ dnorm(y[i], sd = 0.1)
}
y.squared[1:5] <- y[1:5]^2

})

model <- nimbleModel(mc, data = list(z = matrix(rnorm(15), nrow = 5)))

model$a <- 1
model$y

[1] NA NA NA NA NA
model$simulate("y[1:3]")
simulate(model, "y[1:3]")

1Standard usage is model$calculate(nodes) but calculate(model, nodes) is synonymous.

166 CHAPTER 13. WORKING WITH NIMBLE MODELS

model$y

[1] 0.8023941 1.5781841 4.4900193 NA NA
model$simulate("y")
model$y

[1] 6.540423 -2.016232 6.199039 -1.740852 1.842280
model$z

[,1] [,2] [,3]
[1,] -1.6988735 -0.6230498 0.9158482
[2,] 0.2318525 -0.4395223 0.3201767
[3,] -0.1190907 -0.5052968 -0.3666873
[4,] 1.7724929 0.1860351 -0.9406113
[5,] 0.3434222 0.1764178 0.6347029
model$simulate(c("y[1:3]", "z[1:5, 1:3]"))
model$y

[1] 1.7031972 0.1243384 5.4090152 -1.7408521 1.8422796
model$z

[,1] [,2] [,3]
[1,] -1.6988735 -0.6230498 0.9158482
[2,] 0.2318525 -0.4395223 0.3201767
[3,] -0.1190907 -0.5052968 -0.3666873
[4,] 1.7724929 0.1860351 -0.9406113
[5,] 0.3434222 0.1764178 0.6347029
model$simulate(c("z[1:5, 1:3]"), includeData = TRUE)
model$z

[,1] [,2] [,3]
[1,] 1.63730605 1.7692504 1.70187168
[2,] 0.03119038 0.2458073 -0.08449563
[3,] 5.35640000 5.2548750 5.42844735
[4,] -1.71440982 -1.8527256 -1.67575678
[5,] 1.73898956 1.9081997 1.86606253

The example illustrates a number of features:

1. simulate(model, nodes) is equivalent to model$simulate(nodes). You can use either, but
the latter is encouraged and the former may be deprecated inthe future.

2. Inputs like "y[1:3]" are automatically expanded into c("y[1]", "y[2]", "y[3]"). In fact,
simply "y" will be expanded into all nodes within y.

3. An arbitrary number of nodes can be provided as a character vector.
4. Simulations will be done in the order provided, so in practice the nodes should often be

obtained by functions such as getDependencies. These return nodes in topologically-sorted
order, which means no node is manipulated before something it depends on.

13.3. CARRYING OUT MODEL CALCULATIONS 167

5. The data nodes z were not simulated into until includeData = TRUE was used.

Use of calculate, calculateDiff and getLogProb are similar to simulate, except that they
return a value (described above) and they have no includeData argument.

13.3.2 Pre-defined nimbleFunctions for operating on model nodes: simNodes,
calcNodes, and getLogProbNodes

simNodes, calcNodes and getLogProbNodes are basic nimbleFunctions that simulate, calculate, or
get the log probabilities (densities), respectively, of the same set of nodes each time they are called.
Each of these takes a model and a character string of node names as inputs. If nodes is left blank,
then all the nodes of the model are used.

For simNodes, the nodes provided will be topologically sorted to simulate in the correct order. For
calcNodes and getLogProbNodes, the nodes will be sorted and dependent nodes will be included.
Recall that the calculations must be up to date (from a calculate call) for getLogProbNodes to
return the values you are probably looking for.
simpleModelCode <- nimbleCode({

for(i in 1:4){
x[i] ~ dnorm(0,1)
y[i] ~ dnorm(x[i], 1) # y depends on x
z[i] ~ dnorm(y[i], 1) # z depends on y
z conditionally independent of x

}
})

simpleModel <- nimbleModel(simpleModelCode, check = FALSE)
cSimpleModel <- compileNimble(simpleModel)

simulates all the x's and y's
rSimXY <- simNodes(simpleModel, nodes = c('x', 'y'))

calls calculate on x and its dependents (y, but not z)
rCalcXDep <- calcNodes(simpleModel, nodes = 'x')

calls getLogProb on x's and y's
rGetLogProbXDep <- getLogProbNodes(simpleModel,

nodes = 'x')

compiling the functions
cSimXY <- compileNimble(rSimXY, project = simpleModel)
cCalcXDep <- compileNimble(rCalcXDep, project = simpleModel)
cGetLogProbXDep <- compileNimble(rGetLogProbXDep, project = simpleModel)

cSimpleModel$x

[1] NA NA NA NA

168 CHAPTER 13. WORKING WITH NIMBLE MODELS

cSimpleModel$y

[1] NA NA NA NA
simulating x and y
cSimXY$run()
cSimpleModel$x

[1] 0.71527595 -0.93848304 0.09535401 -0.46281942
cSimpleModel$y

[1] -0.7536062 -0.7857965 1.8691166 -1.1108904
cCalcXDep$run()

[1] -11.03292
gives correct answer because logProbs
updated by 'calculate' after simulation
cGetLogProbXDep$run()

[1] -11.03292
cSimXY$run()

gives old answer because logProbs
not updated after 'simulate'
cGetLogProbXDep$run()

[1] -11.03292
cCalcXDep$run()

[1] -13.16811

13.3.3 Accessing log probabilities via logProb variables
For each variable that contains at least one stochastic node, NIMBLE generates a model variable
with the prefix ‘logProb_’. In general users will not need to access these logProb variables directly
but rather will use getLogProb. However, knowing they exist can be useful, in part because these
variables can be monitored in an MCMC.

When the stochastic node is scalar, the logProb variable will have the same size. For example:
model$logProb_y

[1] NA NA NA NA NA
model$calculate("y")

[1] -11.79727
model$logProb_y

13.3. CARRYING OUT MODEL CALCULATIONS 169

[1] -2.094955 -2.108570 -3.042202 -2.445845 -2.105703

Creation of logProb variables for stochastic multivariate nodes is trickier, because they can repre-
sent an arbitrary block of a larger variable. In general NIMBLE records the logProb values using
the lowest possible indices. For example, if x[5:10, 15:20] follows a Wishart distribution, its
log probability (density) value will be stored in logProb_x[5, 15]. When possible, NIMBLE will
reduce the dimensions of the corresponding logProb variable. For example, in
for(i in 1:10) x[i,] ~ dmnorm(mu[], prec[,])

x may be 10 × 20 (dimensions must be provided), but logProb_x will be 10 × 1. For the most part
you do not need to worry about how NIMBLE is storing the log probability values, because you
can always get them using getLogProb.

170 CHAPTER 13. WORKING WITH NIMBLE MODELS

Chapter 14

Data structures in NIMBLE

NIMBLE provides several data structures useful for programming.

We’ll first describe modelValues, which are containers designed for storing values for models. Then
in Section 14.2 we’ll describe nimbleLists, which have a similar purpose to lists in R, allowing you
to store heterogeneous information in a single object.

modelValues can be created in either R or in nimbleFunction setup code. nimbleLists can be created
in R code, in nimbleFunction setup code, and in nimbleFunction run code, from a nimbleList
definition created in R or setup code. Once created, modelValues and nimbleLists can then be
used either in R or in nimbleFunction setup or run code. If used in run code, they will be compiled
along with the nimbleFunction.

14.1 The modelValues data structure
modelValues are containers designed for storing values for models. They may be used for model
outputs or model inputs. A modelValues object will contain rows of variables. Each row contains
one object of each variable, which may be multivariate. The simplest way to build a modelValues
object is from a model object. This will create a modelValues object with the same variables as
the model. Although they were motivated by models, one is free to set up a modelValues with any
variables one wants.

As with the material in the rest of this chapter, modelValues objects will generally be used in
nimbleFunctions that interact with models (see Chapter 15)1. modelValues objects can be defined
either in setup code or separately in R (and then passed as an argument to setup code). The
modelValues object can then used in run code of nimbleFunctions.

14.1.1 Creating modelValues objects
Here is a simple example of creating a modelValues object:
pumpModelValues = modelValues(pumpModel, m = 2)
pumpModel$x

[1] 5 1 5 14 3 19 1 1 4 22
1One may want to read this section after an initial reading of Chapter 15.

171

172 CHAPTER 14. DATA STRUCTURES IN NIMBLE

pumpModelValues$x

[[1]]
[1] NA NA NA NA NA NA NA NA NA NA
##
[[2]]
[1] NA NA NA NA NA NA NA NA NA NA

In this example, pumpModelValues has the same variables as pumpModel, and we set
pumpModelValues to have m = 2 rows. As you can see, the rows are stored as elements of
a list.

Alternatively, one can define a modelValues object manually by first defining a modelValues config-
uration via the modelValuesConf function, and then creating an instance from that configuration,
like this:
mvConf = modelValuesConf(vars = c('a', 'b', 'c'),

type = c('double', 'int', 'double'),
size = list(a = 2, b =c(2,2), c = 1))

customMV = modelValues(mvConf, m = 2)
customMV$a

[[1]]
[1] NA NA
##
[[2]]
[1] NA NA

The arguments to modelValuesConf are matching lists of variable names, types, and sizes. See
help(modelValuesConf) for more details. Note that in R execution, the types are not enforced.
But they will be the types created in C++ code during compilation, so they should be specified
carefully.

The object returned by modelValues is an uncompiled modelValues object. When a nimbleFunction
is compiled, any modelValues objects it uses are also compiled. A NIMBLE model always contains
a modelValues object that it uses as a default location to store the values of its variables.

Here is an example where the customMV created above is used as the setup argument for a nimble-
Function, which is then compiled. Its compiled modelValues is then accessed with $.
simple nimbleFunction that uses a modelValues object
resizeMV <- nimbleFunction(

setup = function(mv){},
run = function(k = integer()){
resize(mv,k)})

rResize <- resizeMV(customMV)
cResize <- compileNimble(rResize)
cResize$run(5)
cCustomMV <- cResize$mv

14.1. THE MODELVALUES DATA STRUCTURE 173

cCustomMV is a compiled modelValues object
cCustomMV[['a']]

[[1]]
[1] NA NA
##
[[2]]
[1] NA NA
##
[[3]]
[1] 0 0
##
[[4]]
[1] 0 0
##
[[5]]
[1] 0 0

Compiled modelValues objects can be accessed and altered in all the same ways as uncompiled ones.
However, only uncompiled modelValues can be used as arguments to setup code in nimbleFunctions.

In the example above a modelValues object is passed to setup code, but a modelValues configuration
can also be passed, with creation of modelValues object(s) from the configuration done in setup
code.

14.1.2 Accessing contents of modelValues
The values in a modelValues object can be accessed in several ways from R, and in fewer ways from
NIMBLE.
sets the first row of a to (0, 1). R only.
customMV[['a']][[1]] <- c(0,1)

sets the second row of a to (2, 3)
customMV['a', 2] <- c(2,3)

can access subsets of each row
customMV['a', 2][2] <- 4

accesses all values of 'a'. Output is a list. R only.
customMV[['a']]

[[1]]
[1] 0 1
##
[[2]]
[1] 2 4
sets the first row of b to a matrix with values 1. R only.
customMV[['b']][[1]] <- matrix(1, nrow = 2, ncol = 2)

174 CHAPTER 14. DATA STRUCTURES IN NIMBLE

sets the second row of b. R only.
customMV[['b']][[2]] <- matrix(2, nrow = 2, ncol = 2)

make sure the size of inputs is correct
customMV['a', 1] <- 1:10 "
problem: size of 'a' is 2, not 10!
will cause problems when compiling nimbleFunction using customMV

Currently, only the syntax customMV["a", 2] works in the NIMBLE language, not customMV[["a"][[2]].

We can query and change the number of rows using getsize and resize, respectively. These work
in both R and NIMBLE. Note that we don’t specify the variables in this case: all variables in a
modelValues object will have the same number of rows.
getsize(customMV)

[1] 2
resize(customMV, 3)
getsize(customMV)

[1] 3
customMV$a

[[1]]
[1] 0 1
##
[[2]]
[1] 2 4
##
[[3]]
[1] NA NA

Often it is useful to convert a modelValues object to a matrix for use in R. For example, we may
want to convert MCMC output into a matrix, for use with the coda package for processing MCMC
samples, or into a list. This can be done with the as.matrix and as.list methods for modelValues
objects, respectively. as.matrix will generate column names from every scalar element of variables
(e.g. “b[1, 1]” ,“b[2, 1]”, etc.). The rows of the modelValues will be the rows of the matrix, with
any matrices or arrays converted to a vector based on column-major ordering.
as.matrix(customMV, 'a') # convert 'a'

a[1] a[2]
[1,] 0 1
[2,] 2 4
[3,] NA NA
as.matrix(customMV) # convert all variables

a[1] a[2] b[1, 1] b[2, 1] b[1, 2] b[2, 2] c[1]
[1,] 0 1 1 1 1 1 NA

14.1. THE MODELVALUES DATA STRUCTURE 175

[2,] 2 4 2 2 2 2 NA
[3,] NA NA NA NA NA NA NA

as.list will return a list with an element for each variable. Each element will be an array of
the same size and shape as the variable with an additional index for the iteration (e.g., MCMC
iteration when used for MCMC output). By default iteration is the first index, but it can be the
last if needed.
as.list(customMV, 'a') # get only 'a'

$a
[,1] [,2]
[1,] 0 1
[2,] 2 4
[3,] NA NA
as.list(customMV) # get all variables

$a
[,1] [,2]
[1,] 0 1
[2,] 2 4
[3,] NA NA
##
$b
, , 1
##
[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] NA NA
##
, , 2
##
[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] NA NA
##
##
$c
[,1]
[1,] NA
[2,] NA
[3,] NA
as.list(customMV, 'a', iterationAsLastIndex = TRUE) # put iteration in last index

$a
[,1] [,2] [,3]

176 CHAPTER 14. DATA STRUCTURES IN NIMBLE

[1,] 0 2 NA
[2,] 1 4 NA

If a variable is a scalar, using unlist in R to extract all rows as a vector can be useful.
customMV['c', 1] <- 1
customMV['c', 2] <- 2
customMV['c', 3] <- 3
unlist(customMV['c',])

[1] 1 2 3

Once we have a modelValues object, we can see the structure of its contents via the varNames and
sizes components of the object.
customMV$varNames

[1] "a" "b" "c"
customMV$sizes

$a
[1] 2
##
$b
[1] 2 2
##
$c
[1] 1

As with most NIMBLE objects, modelValues are passed by reference, not by value. That means any
modifications of modelValues objects in either R functions or nimbleFunctions will persist outside
of the function. This allows for more efficient computation, as stored values are immediately shared
among nimbleFunctions.
alter_a <- function(mv){

mv['a',1][1] <- 1
}
customMV['a', 1]

[1] 0 1
alter_a(customMV)
customMV['a',1]

[1] 1 1

However, when you retrieve a variable from a modelValues object, the result is a standard R list,
which is subsequently passed by value, as usual in R.

14.1.2.1 Automating calculation and simulation using modelValues

The nimbleFunctions simNodesMV, calcNodesMV, and getLogProbsMV can be used to operate on
a model based on rows in a modelValues object. For example, simNodesMV will simulate in the

14.2. THE NIMBLELIST DATA STRUCTURE 177

model multiple times and record each simulation in a row of its modelValues. calcNodesMV and
getLogProbsMV iterate over the rows of a modelValues, copy the nodes into the model, and then
do their job of calculating or collecting log probabilities (densities), respectively. Each of these
returns a numeric vector with the summed log probabilities of the chosen nodes from each row.
calcNodesMV will save the log probabilities back into the modelValues object if saveLP = TRUE, a
run-time argument.

Here are some examples:
mv <- modelValues(simpleModel)
rSimManyXY <- simNodesMV(simpleModel, nodes = c('x', 'y'), mv = mv)
rCalcManyXDeps <- calcNodesMV(simpleModel, nodes = 'x', mv = mv)
rGetLogProbMany <- getLogProbNodesMV(simpleModel, nodes = 'x', mv = mv)

cSimManyXY <- compileNimble(rSimManyXY, project = simpleModel)
cCalcManyXDeps <- compileNimble(rCalcManyXDeps, project = simpleModel)
cGetLogProbMany <- compileNimble(rGetLogProbMany, project = simpleModel)

cSimManyXY$run(m = 5) # simulating 5 times
cCalcManyXDeps$run(saveLP = TRUE) # calculating

[1] -11.24771 -26.42169 -15.48325 -17.24588 -16.43909
cGetLogProbMany$run() #

[1] -11.24771 -26.42169 -15.48325 -17.24588 -16.43909
result <- as.matrix(cSimManyXY$mv) # extract simulated values

14.2 The nimbleList data structure
nimbleLists provide a container for storing different types of objects in NIMBLE, similar to the list
data structure in R. Before a nimbleList can be created and used, a definition2 for that nimbleList
must be created that provides the names, types, and dimensions of the elements in the nimbleList.
nimbleList definitions must be created in R (either in R’s global environment or in setup code), but
the nimbleList instances can be created in run code.

Unlike lists in R, nimbleLists must have the names and types of all list elements provided by a
definition before the list can be used. A nimbleList definition can be made by using the nimbleList
function in one of two manners. The first manner is to provide the nimbleList function with a series
of expressions of the form name = type(nDim), similar to the specification of run-time arguments
to nimbleFunctions. The types allowed for a nimbleList are the same as those allowed as run-time
arguments to a nimbleFunction, described in Section 11.4. For example, the following line of code
creates a nimbleList definition with two elements: x, which is a scalar integer, and Y, which is a
matrix of doubles.
exampleNimListDef <- nimbleList(x = integer(0), Y = double(2))

2The configuration for a modelValues object is the same concept as a definition here; in a future release of NIMBLE
we may make the usage more consistent between modelValues and nimbleLists.

178 CHAPTER 14. DATA STRUCTURES IN NIMBLE

The second method of creating a nimbleList definition is by providing an R list of nimbleType
objects to the nimbleList() function. A nimbleType object can be created using the nimbleType
function, which must be provided with three arguments: the name of the element being created,
the type of the element being created, and the dim of the element being created. For example,
the following code creates a list with two nimbleType objects and uses these objects to create a
nimbleList definition.
nimbleListTypes <- list(nimbleType(name = 'x', type = 'integer', dim = 0),

nimbleType(name = 'Y', type = 'double', dim = 2))

this nimbleList definition is identical to the one created above
exampleNimListDef2 <- nimbleList(nimbleListTypes)

Creating definitions using a list of nimbleTypes can be useful, as it allows for programmatic gener-
ation of nimbleList elements.

Once a nimbleList definition has been created, new instances of nimbleLists can be made from that
definition using the new member function. The new function can optionally take initial values for
the list elements as arguments. Below, we create a new nimbleList from our exampleNimListDef
and specify values for the two elements of our list:
exampleNimList <- exampleNimListDef$new(x = 1, Y = diag(2))

Once created, nimbleList elements can be accessed using the $ operator, just as with lists in R. For
example, the value of the x element of our exampleNimbleList can be set to 7 using
exampleNimList$x <- 7

nimbleList definitions can be created either in R’s global environment or in setup code of a nimble-
Function. Once a nimbleList definition has been made, new instances of nimbleLists can be created
using the new function in R’s global environment, in setup code, or in run code of a nimbleFunction.

nimbleLists can also be passed as arguments to run code of nimbleFunctions and returned from
nimbleFunctions. To use a nimbleList as a run function argument, the name of the nimbleList
definition should be provided as the argument type, with a set of parentheses following. To return
a nimbleList from the run code of a nimbleFunction, the returnType of that function should be
the name of the nimbleList definition, again using a following set of parentheses.

Below, we demonstrate a function that takes the exampleNimList as an argument, modifies its Y
element, and returns the nimbleList.
mynf <- nimbleFunction(

run = function(vals = exampleNimListDef()){
onesMatrix <- matrix(value = 1, nrow = 2, ncol = 2)
vals$Y <- onesMatrix
returnType(exampleNimListDef())
return(vals)

})

pass exampleNimList as argument to mynf
mynf(exampleNimList)

14.2. THE NIMBLELIST DATA STRUCTURE 179

nimbleList object of type nfRefClass_25
Field "x":
[1] 7
Field "Y":
[,1] [,2]
[1,] 1 1
[2,] 1 1

nimbleList arguments to run functions are passed by reference – this means that if an element
of a nimbleList argument is modified within a function, that element will remain modified when
the function has finished running. To see this, we can inspect the value of the Y element of the
exampleNimList object and see that it has been modified.
exampleNimList$Y

[,1] [,2]
[1,] 1 1
[2,] 1 1

In addition to storing basic data types, nimbleLists can also store other nimbleLists. To achieve this,
we must create a nimbleList definition that declares the types of nested nimbleLists a nimbleList
will store. Below, we create two types of nimbleLists: the first, named innerNimList, will be stored
inside the second, named outerNimList:
first, create definitions for both inner and outer nimbleLists
innerNimListDef <- nimbleList(someText = character(0))
outerNimListDef <- nimbleList(xList = innerNimListDef(),

z = double(0))

then, create outer nimbleList
outerNimList <- outerNimListDef$new(z = 3.14)

access element of inner nimbleList
outerNimList$xList$someText <- "hello, world"

Note that definitions for inner, or nested, nimbleLists must be created before the definition for an
outer nimbleList.

14.2.1 Pre-defined nimbleList types

Several types of nimbleLists are predefined in NIMBLE for use with particular kinds of nimble-
Functions.

• eigenNimbleList and svdNimbleList are the return types of the eigen and svd functions
(Section @ref(sec:eigen-nimFunctions}).

• waicNimbleList is the type provided for WAIC output from an MCMC.
• waicDetailsNimbleList is the type provided for detailed WAIC output from an MCMC.
• optimResultNimbleList is the return type of nimOptim.
• optimControlNimbleList is the type for the control list input to nimOptim.

180 CHAPTER 14. DATA STRUCTURES IN NIMBLE

14.2.2 Using eigen and svd in nimbleFunctions

NIMBLE has two linear algebra functions that return nimbleLists. The eigen function takes a sym-
metic matrix, x, as an argument and returns a nimbleList of type eigenNimbleList. nimbleLists of
type eigenNimbleList have two elements: values, a vector with the eigenvalues of x, and vectors,
a square matrix with the same dimension as x whose columns are the eigenvectors of x. The eigen
function has two additional arguments: symmetric and only.values. The symmetric argument
can be used to specify if x is a symmetric matrix or not. If symmetric = FALSE (the default value),
x will be checked for symmetry. Eigendecompositions in NIMBLE for symmetric matrices are both
faster and more accurate. Additionally, eigendecompostions of non-symmetric matrices can have
complex entries, which are not supported by NIMBLE. If a complex entry is detected, NIMBLE
will issue a warning and that entry will be set to NaN. The only.values arument defaults to FALSE.
If only.values = TRUE, the eigen function will not calculate the eigenvectors of x, leaving the
vectors nimbleList element empty. This can reduce calculation time if only the eigenvalues of x
are needed.

The svd function takes an 𝑛 × 𝑝 matrix x as an argument, and returns a nimbleList of type
svdNimbleList. nimbleLists of type svdNimbleList have three elements: d, a vector with the
singular values of x, u a matrix with the left singular vectors of x, and v, a matrix with the right
singular vectors of x. The svd function has an optional argument vectors which defaults to a
value of "full". The vectors argument can be used to specify the number of singular vectors that
are returned. If vectors = "full", v will be an 𝑛 × 𝑛 matrix and u will be an 𝑝 × 𝑝 matrix. If
vectors = "thin", v will be an𝑛×𝑚 matrix, where 𝑚 = min(𝑛, 𝑝), and u will be an 𝑚×𝑝 matrix.
If vectors = "none", the u and v elements of the returned nimbleList will not be populated.

nimbleLists created by either eigen or svd can be returned from a nimbleFunction, using
returnType(eigenNimbleList()) or returnType(svdNimbleList()) respectively. nimbleLists
created by eigen and svd can also be used within other nimbleLists by specifying the nimbleList
element types as eigenNimbleList() and svdNimbleList(). The below example demonstrates
the use of eigen and svd within a nimbleFunction.
eigenListFunctionGenerator <- nimbleFunction(

setup = function(){
demoMatrix <- diag(4) + 2
eigenAndSvdListDef <- nimbleList(demoEigenList = eigenNimbleList(),

demoSvdList = svdNimbleList())
eigenAndSvdList <- eigenAndSvdListDef$new()

},
run = function(){
we will take the eigendecomposition and svd of a symmetric matrix
eigenAndSvdList$demoEigenList <<- eigen(demoMatrix, symmetric = TRUE,

only.values = TRUE)
eigenAndSvdList$demoSvdList <<- svd(demoMatrix, vectors = 'none')
returnType(eigenAndSvdListDef())
return(eigenAndSvdList)

})
eigenListFunction <- eigenListFunctionGenerator()

outputList <- eigenListFunction$run()

14.2. THE NIMBLELIST DATA STRUCTURE 181

outputList$demoEigenList$values

[1] 9 1 1 1
outputList$demoSvdList$d

[1] 9 1 1 1

The eigenvalues and singular values returned from the above function are the same since the matrix
being decomposed was symmetric. However, note that both eigendecompositions and singular value
decompositions are numerical procedures, and computed solutions may have slight differences even
for a symmetric input matrix.

182 CHAPTER 14. DATA STRUCTURES IN NIMBLE

Chapter 15

Writing nimbleFunctions to interact
with models

15.1 Overview
When you write an R function, you say what the input arguments are, you provide the code for
execution, and in that code you give the value to be returned1. Using the function keyword in R
triggers the operation of creating an object that is the function.

Creating nimbleFunctions is similar, but there are two kinds of code and two steps of execution:

1. Setup code is provided as a regular R function, but the programmer does not control what
it returns. Typically the inputs to setup code are objects like a model, a vector of nodes, a
modelValues object or a modelValues configuration, or another nimbleFunction. The setup
code, as its name implies, sets up information for run-time code. It is executed in R, so it
can use any aspect of R.

2. Run code is provided in the NIMBLE language, which was introduced in Chapter 11. This is
similar to a narrow subset of R, but it is important to remember that it is different – defined
by what can be compiled – and much more limited. Run code can use the objects created by
the setup code. In addition, some information on variable types must be provided for input
arguments, the return value, and in some circumstances for local variables. There are two
kinds of run code:

a. There is always a primary function, given as the argument run2.
b. There can optionally be other functions, or ‘methods’ in the language of object-oriented

programming, that share the same objects created by the setup function.

Here is a small example to fix ideas:
logProbCalcPlus <- nimbleFunction(

setup = function(model, node) {
dependentNodes <- model$getDependencies(node)
valueToAdd <- 1

1Normally this is the value of the last evaluated code, or the argument to return.
2This can be omitted if you don’t need it.

183

184 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

},
run = function(P = double(0)) {

model[[node]] <<- P + valueToAdd
return(model$calculate(dependentNodes))
returnType(double(0))

})

code <- nimbleCode({
a ~ dnorm(0, 1)
b ~ dnorm(a, 1)

})
testModel <- nimbleModel(code, check = FALSE)
logProbCalcPlusA <- logProbCalcPlus(testModel, "a")
testModel$b <- 1.5
logProbCalcPlusA$run(0.25)

[1] -2.650377
dnorm(1.25,0,1,TRUE)+dnorm(1.5,1.25,1,TRUE) # direct validation

[1] -2.650377
testModel$a # "a" was set to 0.5 + valueToAdd

[1] 1.25

The call to the R function called nimbleFunction returns a function, similarly to defining a func-
tion in R. That function, logProbCalcPlus, takes arguments for its setup function, executes it,
and returns an object, logProbCalcPlusA, that has a run member function (method) accessed
by $run. In this case, the setup function obtains the stochastic dependencies of the node us-
ing the getDependencies member function of the model (see Section 13.1.3) and stores them in
dependentNodes. In this way, logProbCalcPlus can adapt to any model. It also creates a variable,
valueToAdd, that can be used by the nimbleFunction.

The object logProbCalcPlusA, returned by logProbCalcPlus, is permanently bound to the results
of the processed setup function. In this case, logProbCalcPlusA$run takes a scalar input value,
P, assigns P + valueToAdd to the given node in the model, and returns the sum of the log proba-
bilities of that node and its stochastic dependencies3. We say logProbCalcPlusA is an ‘instance’
of logProbCalcPlus that is ‘specialized’ or ‘bound’ to a and testModel. Usually, the setup code
will be where information about the model structure is determined, and then the run code can use
that information without repeatedly, redundantly recomputing it. A nimbleFunction can be called
repeatedly (one can think of it as a generator), each time returning a specialized nimbleFunction.

Readers familiar with object-oriented programming may find it useful to think in terms of class
definitions and objects. nimbleFunction creates a class definition. Each specialized nimbleFunction
is one object in the class. The setup arguments are used to define member data in the object.

3Note the use of the global assignment operator to assign into the model. This is necessary for assigning into
variables from the setup function, at least if you want to avoid warnings from R. These warnings come from R’s
reference class system.

15.2. USING AND COMPILING NIMBLEFUNCTIONS 185

15.2 Using and compiling nimbleFunctions
To compile the nimbleFunction, together with its model, we use compileNimble:
CnfDemo <- compileNimble(testModel, logProbCalcPlusA)
CtestModel <- CnfDemo$testModel
ClogProbCalcPlusA <- CnfDemo$logProbCalcPlusA

These have been initialized with the values from their uncompiled versions and can be used in the
same way:
CtestModel$a # values were initialized from testModel

[1] 1.25
CtestModel$b

[1] 1.5
lpA <- ClogProbCalcPlusA$run(1.5)
lpA

[1] -5.462877
verify the answer:
dnorm(CtestModel$b, CtestModel$a, 1, log = TRUE) +

dnorm(CtestModel$a, 0, 1, log = TRUE)

[1] -5.462877
CtestModel$a # a was modified in the compiled model

[1] 2.5
testModel$a # the uncompiled model was not modified

[1] 1.25

15.3 Writing setup code
15.3.1 Useful tools for setup functions
The setup function is typically used to determine information on nodes in a model, set up model-
Values or nimbleList objects, set up (nested) nimbleFunctions or nimbleFunctionLists, and set up
any persistent numeric objects. For example, the setup code of an MCMC nimbleFunction creates
the nimbleFunctionList of sampler nimbleFunctions. The values of numeric objects created in setup
code can be modified by run code and will persist across calls.

Some of the useful tools and objects to create in setup functions include:

• vectors of node names, often from a model Often these are obtained from the
getNodeNames, getDependencies, and other methods of a model, described in Sections
13.1-13.2.

• modelValues objects These are discussed in Sections 14.1 and 15.4.4.

186 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

• nimbleList objects New instances of nimbleLists can be created from a nimbleList defini-
tion in either setup or run code. See Section 14.2 for more information.

• specializations of other nimbleFunctions A useful NIMBLE programming technique is
to have one nimbleFunction contain other nimbleFunctions, which it can use in its run-time
code (Section 15.4.7).

• lists of other nimbleFunctions In addition to containing single other nimbleFunctions, a
nimbleFunction can contain a list of other nimbleFunctions (Section 15.4.8).

If one wants a nimbleFunction that does get specialized but has empty setup code, use setup =
function() {} or setup = TRUE.

15.3.2 Accessing and modifying numeric values from setup
While models and nodes created during setup cannot be modified4, numeric values and modelValues
can be, as illustrated by extending the example from above.
logProbCalcPlusA$valueToAdd # in the uncompiled version

[1] 1
logProbCalcPlusA$valueToAdd <- 2
ClogProbCalcPlusA$valueToAdd # or in the compiled version

[1] 1
ClogProbCalcPlusA$valueToAdd <- 3
ClogProbCalcPlusA$run(1.5)

[1] -16.46288
CtestModel$a # a == 1.5 + 3

[1] 4.5

15.3.3 Determining numeric types in nimbleFunctions
For numeric variables from the setup function that appear in the run function or other member
functions (or are declared in setupOutputs), the type is determined from the values created by
the setup code. The types created by setup code must be consistent across all specializations
of the nimbleFunction. For example if X is created as a matrix (two-dimensional double) in one
specialization but as a vector (one-dimensional double) in another, there will be a problem during
compilation. The sizes may differ in each specialization.

Treatment of vectors of length one presents special challenges because they could be treated as
scalars or vectors. Currently they are treated as scalars. If you want a vector, ensure that the
length is greater than one in the setup code and then use setSize in the run-time code.

15.3.4 Control of setup outputs
Sometimes setup code may create variables that are not used in run code. By default, NIMBLE
inspects run code and omits variables from setup that do not appear in run code from compila-

4Actually, they can be, but only for uncompiled nimbleFunctions.

15.4. WRITING RUN CODE 187

tion. However, sometimes a programmer may want to force a numeric or character variable to be
included in compilation, even if it is not used directly in run code. As shown below, such variables
can be directly accessed in one nimbleFunction from another, which provides a way of using nim-
bleFunctions as general data structures. To force NIMBLE to include variables during compilation,
for example X and Y, simply include
setupOutputs(X, Y)

anywhere in the setup code.

15.4 Writing run code
In Chapter 11 we described the functionality of the NIMBLE language that could be used in run
code without setup code (typically in cases where no models or modelValues are needed). Next we
explain the additional features that allow use of models and modelValues in the run code.

15.4.1 Driving models: calculate, calculateDiff, simulate, getLogProb
These four functions are the primary ways to operate a model. Their syntax was explained in
Section 13.3. Except for getLogProb, it is usually important for the nodes vector to be sorted in
topological order. Model member functions such as getDependencies and expandNodeNames will
always return topoligically sorted node names.

Most R-like indexing of a node vector is allowed within the argument to calculate, calculateDiff,
simulate, and getLogProb. For example, all of the following are allowed:
myModel$calculate(nodes)
myModel$calculate(nodes[i])
myModel$calculate(nodes[1:3])
myModel$calculate(nodes[c(1,3)])
myModel$calculate(nodes[2:i])
myModel$calculate(nodes[values(model, nodes) + 0.1 < x])

Note that in the last line of code, one must have that the length of nodes is equal to that of
values(model, nodes), which means that all the nodes in nodes must be scalar nodes.

Also note that one cannot create new vectors of nodes in run code. They can only be indexed
within a call to calculate, calculateDiff, simulate or getLogProb.

15.4.2 Getting and setting variable and node values
15.4.2.1 Using indexing with nodes

Here is an example that illustrates getting and setting of nodes, subsets of nodes, or variables. Note
the following:

• In model[[v]], v can only be a single node or variable name, not a vector of multiple nodes
nor an element of such a vector (model[[nodes[i]]] does not work). The node itself may
be a vector, matrix or array node.

• In fact, v can be a node-name-like character string, even if it is not actually a node in the
model. See example 4 in the code below.

188 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

• One can also use model$varName, with the caveat that varName must be a variable name.
This usage would only make sense for a nimbleFunction written for models known to have
a specific variable. (Note that if a is a scalar node in model, then model[['a']] will be a
scalar but model$a will be a vector of length 1.

• one should use the <<- global assignment operator to assign into model nodes.

Note that NIMBLE does not allow variables to change dimensions. Model nodes are the same, and
indeed are more restricted because they can’t change sizes. In addition, NIMBLE distinguishes
between scalars and vectors of length 1. These rules, and ways to handle them correctly, are
illustrated in the following code as well as in Section 11.3.
code <- nimbleCode({

z ~ dnorm(0, sd = sigma)
sigma ~ dunif(0, 10)
y[1:n] ~ dmnorm(zeroes[1:n], cov = C[1:5, 1:5])

})
n <- 5
m <- nimbleModel(code, constants = list(n = n, zeroes = rep(0, n),

C = diag(n)))
cm <- compileNimble(m)

nfGen <- nimbleFunction(
setup = function(model) {
node1 and node2 would typically be setup arguments, so they could
have different values for different models. We are assigning values
here so the example is clearer.

node1 <- 'sigma' # a scalar node
node2 <- 'y[1:5]' # a vector node
notReallyANode <- 'y[2:4]' # y[2:4] allowed even though not a node!

},
run = function(vals = double(1)) {

tmp0 <- model[[node1]] # 1. tmp0 will be a scalar
tmp1 <- model[[node2]] # 2. tmp1 will be a vector
tmp2 <- model[[node2]][1] # 3. tmp2 will be a scalar
tmp3 <- model[[notReallyANode]] # 4. tmp3 will be a vector
tmp4 <- model$y[3:4] # 5. hard-coded access to a model variable
6. node1 is scalar so can be assigned a scalar:
model[[node1]] <<- runif(1)
model[[node2]][1] <<- runif(1)

7. an element of node2 can be assigned a scalar
model[[node2]] <<- runif(length(model[[node2]]))

8. a vector can be assigned to the vector node2
model[[node2]][1:3] <<- vals[1:3]

elements of node2 can be indexed as needed
returnType(double(1))
out <- model[[node2]] # we can return a vector
return(out)

}

15.4. WRITING RUN CODE 189

)

Rnf <- nfGen(m)
Cnf <- compileNimble(Rnf)
Cnf$run(rnorm(10))

[1] -1.4887622 -1.1607519 1.4577382 0.4855725 0.6932443

Use of [[]] allows one to programmatically access a node based on a character variable containing
the node name; this character variable would generally be set in setup code. In contrast, use of $
hard codes the variable name and would not generally be suitable for nimbleFunctions intended for
use with arbitrary models.

15.4.2.2 Getting and setting more than one model node or variable at a time using
values

Sometimes it is useful to set a collection of nodes or variables at one time. For example, one might
want a nimbleFunction that will serve as the objective function for an optimizer. The input to the
nimbleFunction would be a vector, which should be used to fill a collection of nodes in the model
before calculating their log probabilities. This can be done using values:
get values from a set of model nodes into a vector
P <- values(model, nodes)
or put values from a vector into a set of model nodes
values(model, nodes) <- P

where the first line would assign the collection of values from nodes into P, and the second would
do the inverse. In both cases, values from nodes with two or more dimensions are flattened into a
vector in column-wise order.

values(model, nodes) may be used as a vector in other expressions, e.g.,
Y <- A %*% values(model, nodes) + b

One can also index elements of nodes in the argument to values, in the same manner as discussed
for calculate and related functions in Section 15.4.1.

Note again the potential for confusion between scalars and vectors of length 1. values returns a
vector and expects a vector when used on the left-hand side of an assignment. If only a single value
is being assigned, it must be a vector of length 1, not a scalar. This can be achieved by wrapping
a scalar in c() when necessary. For example:
c(rnorm(1)) creates vector of length one:
values(model, nodes[1]) <- c(rnorm(1))
won't compile because rnorm(1) is a scalar
values(model, nodes[1]) <- rnorm(1)

out <- values(model, nodes[1]) # out is a vector
out2 <- values(model, nodes[1])[1] # out2 is a scalar

190 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

15.4.3 Getting parameter values and node bounds
Sections 13.2.3-13.2.4 describe how to get the parameter values for a node and the range (bounds)
of possible values for the node using getParam and getBound. Both of these can be used in run
code.

15.4.4 Using modelValues objects
The modelValues structure was introduced in Section 14.1. Inside nimbleFunctions, modelValues
are designed to easily save values from a model object during the running of a nimbleFunction. A
modelValues object used in run code must always exist in the setup code, either by passing it in as
a setup argument or creating it in the setup code.

To illustrate this, we will create a nimbleFunction for computing importance weights for impor-
tance sampling. This function will use two modelValues objects. propModelValues will contain
a set of values simulated from the importance sampling distribution and a field propLL for their
log probabilities (densities). savedWeights will contain the difference in log probability (density)
between the model and the propLL value provided for each set of values.
Accepting modelValues as a setup argument
swConf <- modelValuesConf(vars = "w",

types = "double",
sizes = 1)

setup = function(propModelValues, model, savedWeightsConf){
Building a modelValues in the setup function
savedWeights <- modelValues(conf = savedWeightsConf)
List of nodes to be used in run function
modelNodes <- model$getNodeNames(stochOnly = TRUE,

includeData = FALSE)
}

The simplest way to pass values back and forth between models and modelValues inside of a
nimbleFunction is with copy, which has the synonym nimCopy. See help(nimCopy) for argument
details.

Alternatively, the values may be accessed via indexing of individual rows, using the notation
mv[var, i], where mv is a modelValues object, var is a variable name (not a node name), and i
is a row number. Likewise, the getsize and resize functions can be used as discussed in Section
14.1. However the function as.matrix does not work in run code.

Here is a run function to use these modelValues:
run = function(){

gets the number of rows of propSamples
m <- getsize(propModelValues)

resized savedWeights to have the proper rows
resize(savedWeights, m)
for(i in 1:m){

Copying from propSamples to model.
Node names of propSamples and model must match!

15.4. WRITING RUN CODE 191

nimCopy(from = propModelValues, to = model, row = i,
nodes = modelNodes, logProb = FALSE)

calculates the log likelihood of the model
targLL <- model$calculate()
retrieves the saved log likelihood from the proposed model
propLL <- propModelValues["propLL",i][1]
saves the importance weight for the i-th sample
savedWeights["w", i][1] <<- exp(targLL - propLL)

}
does not return anything

}

Once the nimbleFunction is built, the modelValues object can be accessed using $, which is shown
in more detail below. In fact, since modelValues, like most NIMBLE objects, are reference class
objects, one can get a reference to them before the function is executed and then use that reference
afterwards.
simple model and modelValues for example use with code above
targetModelCode <- nimbleCode({

x ~ dnorm(0,1)
for(i in 1:4)

y[i] ~ dnorm(0,1)
})

code for proposal model
propModelCode <- nimbleCode({

x ~ dnorm(0,2)
for(i in 1:4)

y[i] ~ dnorm(0,2)
})

creating the models
targetModel = nimbleModel(targetModelCode, check = FALSE)
propModel = nimbleModel(propModelCode, check = FALSE)
cTargetModel = compileNimble(targetModel)
cPropModel = compileNimble(propModel)

sampleMVConf = modelValuesConf(vars = c("x", "y", "propLL"),
types = c("double", "double", "double"),
sizes = list(x = 1, y = 4, propLL = 1))

sampleMV <- modelValues(sampleMVConf)

nimbleFunction for generating proposal sample
PropSamp_Gen <- nimbleFunction(

setup = function(mv, propModel){
nodeNames <- propModel$getNodeNames()

192 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

},
run = function(m = integer()){

resize(mv, m)
for(i in 1:m){

propModel$simulate()
nimCopy(from = propModel, to = mv, nodes = nodeNames, row = i)
mv["propLL", i][1] <<- propModel$calculate()

}
}
)

nimbleFunction for calculating importance weights
uses setup and run functions as defined in previous code chunk
impWeights_Gen <- nimbleFunction(setup = setup,

run = run)

making instances of nimbleFunctions
note that both functions share the same modelValues object
RPropSamp <- PropSamp_Gen(sampleMV, propModel)
RImpWeights <- impWeights_Gen(sampleMV, targetModel, swConf)

compiling
CPropSamp <- compileNimble(RPropSamp, project = propModel)
CImpWeights <- compileNimble(RImpWeights, project = targetModel)

generating and saving proposal sample of size 10
CPropSamp$run(10)

calculating the importance weights and saving to mv
CImpWeights$run()

retrieving the modelValues objects
extracted objects are C-based modelValues objects

savedPropSamp_1 = CImpWeights$propModelValues
savedPropSamp_2 = CPropSamp$mv

Subtle note: savedPropSamp_1 and savedPropSamp_2
both provide interface to the same compiled modelValues objects!
This is because they were both built from sampleMV.

savedPropSamp_1["x",1]

[1] -0.3919851

15.4. WRITING RUN CODE 193

savedPropSamp_2["x",1]

[1] -0.3919851
savedPropSamp_1["x",1] <- 0 # example of directly setting a value
savedPropSamp_2["x",1]

[1] 0
viewing the saved importance weights
savedWeights <- CImpWeights$savedWeights
unlist(savedWeights[["w"]])

[1] 0.5024644 1.7765357 3.5155732 0.3893390 0.5530012 0.5085069 2.3890876
[8] 0.6548453 0.5940573 0.4943950
viewing first 3 rows -- note that savedPropSsamp_1["x", 1] was altered
as.matrix(savedPropSamp_1)[1:3,]

propLL[1] x[1] y[1] y[2] y[3] y[4]
[1,] -4.951100 0.00000000 -0.3951785 -1.0040021 -0.6420246 0.5993671
[2,] -7.476891 0.35317374 -0.4510107 1.7080201 1.0471602 -0.5225390
[3,] -8.841966 -0.06913039 -2.2884703 0.6767462 0.3955090 -0.3519276

Importance sampling could also be written using simple vectors for the weights, but we illustrated
putting them in a modelValues object along with model variables.

15.4.5 Using model variables and modelValues in expressions
Each way of accessing a variable, node, or modelValues can be used amidst mathematical expres-
sions, including with indexing, or passed to another nimbleFunction as an argument. For example,
the following two statements would be valid:
model[["x[2:8,]"]][2:4, 1:3] %*% Z

if Z is a vector or matrix, and
C[6:10] <- mv[v, i][1:5, k] + B

if B is a vector or matrix.

The NIMBLE language allows scalars, but models defined from BUGS code are never created as
purely scalar nodes. Instead, a single node such as defined by z ~ dnorm(0, 1) is implemented as
a vector of length 1, similar to R. When using z via model$z or model[["z"]], NIMBLE will try
to do the right thing by treating this as a scalar. In the event of problems5, a more explicit way to
access z is model$z[1] or model[["z"]][1].

15.4.6 Including other methods in a nimbleFunction
Other methods can be included with the methods argument to nimbleFunction. These methods
can use the objects created in setup code in just the same ways as the run function. In fact, the
run function is just a default main method name. Any method can then call another method.

5Please tell us!

194 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

methodsDemo <- nimbleFunction(
setup = function() {sharedValue <- 1},
run = function(x = double(1)) {

print("sharedValues = ", sharedValue, "\n")
increment()
print("sharedValues = ", sharedValue, "\n")
A <- times(5)
return(A * x)
returnType(double(1))

},
methods = list(

increment = function() {
sharedValue <<- sharedValue + 1

},
times = function(factor = double()) {

return(factor * sharedValue)
returnType(double())

}))

methodsDemo1 <- methodsDemo()
methodsDemo1$run(1:10)

sharedValues = 1
##
sharedValues = 2

[1] 10 20 30 40 50 60 70 80 90 100
methodsDemo1$sharedValue <- 1
CmethodsDemo1 <- compileNimble(methodsDemo1)
CmethodsDemo1$run(1:10)

sharedValues = 1
##
sharedValues = 2

[1] 10 20 30 40 50 60 70 80 90 100

15.4.7 Using other nimbleFunctions
One nimbleFunction can use another nimbleFunction that was passed to it as a setup argument or
was created in the setup function. This can be an effective way to program. When a nimbleFunction
needs to access a setup variable or method of another nimbleFunction, use $.
usePreviousDemo <- nimbleFunction(

setup = function(initialSharedValue) {
myMethodsDemo <- methodsDemo()

},
run = function(x = double(1)) {

myMethodsDemo$sharedValue <<- initialSharedValue

15.4. WRITING RUN CODE 195

print(myMethodsDemo$sharedValue)
A <- myMethodsDemo$run(x[1:5])
print(A)
B <- myMethodsDemo$times(10)
return(B)
returnType(double())

})

usePreviousDemo1 <- usePreviousDemo(2)
usePreviousDemo1$run(1:10)

2
sharedValues = 2
##
sharedValues = 3
##
15 30 45 60 75

[1] 30
CusePreviousDemo1 <- compileNimble(usePreviousDemo1)
CusePreviousDemo1$run(1:10)

2
sharedValues = 2
##
sharedValues = 3
##
15
30
45
60
75

[1] 30

15.4.8 Virtual nimbleFunctions and nimbleFunctionLists

Often it is useful for one nimbleFunction to have a list of other nimbleFunctions, all of whose
methods have the same arguments and return types. For example, NIMBLE’s MCMC engine
contains a list of samplers that are each nimbleFunctions.

To make such a list, NIMBLE provides a way to declare the arguments and return types of methods:
virtual nimbleFunctions created by nimbleFunctionVirtual. Other nimbleFunctions can inherit
from virtual nimbleFunctions, which in R is called ‘containing’ them. Readers familiar with object
oriented programming will recognize this as a simple class inheritance system. In Version 1.2.1 it
is limited to simple, single-level inheritance.

Here is how it works:

196 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

baseClass <- nimbleFunctionVirtual(
run = function(x = double(1)) {returnType(double())},
methods = list(

foo = function() { returnType(double()) }
))

derived1 <- nimbleFunction(
contains = baseClass,
setup = function(){},
run = function(x = double(1)) {

print("run 1")
return(sum(x))
returnType(double())

},
methods = list(

foo = function() {
print("foo 1")
return(rnorm(1, 0, 1))
returnType(double())

}
)

)

derived2 <- nimbleFunction(
contains = baseClass,
setup = function(){},
run = function(x = double(1)) {

print("run 2")
return(prod(x))
returnType(double())

},
methods = list(

foo = function() {
print("foo 2")
return(runif(1, 100, 200))
returnType(double())

}
)

)

useThem <- nimbleFunction(
setup = function() {

nfl <- nimbleFunctionList(baseClass)
nfl[[1]] <- derived1()
nfl[[2]] <- derived2()

},
run = function(x = double(1)) {

15.4. WRITING RUN CODE 197

for(i in seq_along(nfl)) {
print(nfl[[i]]$run(x))
print(nfl[[i]]$foo())

}
}
)

useThem1 <- useThem()
set.seed(1)
useThem1$run(1:5)

run 1
15
foo 1
-0.6264538
run 2
120
foo 2
157.2853
CuseThem1 <- compileNimble(useThem1)
set.seed(1)
CuseThem1$run(1:5)

run 1
15
foo 1
-0.626454
run 2
120
foo 2
157.285

One can also use seq_along with nimbleFunctionLists (and only with nimbleFunctionLists). As
in R, seq_along(myFunList) is equivalent to 1:length(myFunList) if the length of myFunList is
greater than zero. It is an empty sequence if the length is zero.

Virtual nimbleFunctions cannot define setup values to be inherited.

15.4.9 Character objects
NIMBLE provides limited uses of character objects in run code. Character vectors created in setup
code will be available in run code, but the only thing you can really do with them is include them
in a print or stop statement.

Note that character vectors of model node and variable names are processed during compilation. For
example, in model[[node]], node may be a character object, and the NIMBLE compiler processes
this differently than print("The node name was ", node). In the former, the NIMBLE compiler
sets up a C++ pointer directly to the node in the model, so that the character content of node is
never needed in C++. In the latter, node is used as a C++ string and therefore is needed in C++.

198 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

15.4.10 User-defined data structures
Before the introduction of nimbleLists in Version 0.6-4, NIMBLE did not explicitly have user-defined
data structures. An alternative way to create a data structure in NIMBLE is to use nimbleFunctions
to achieve a similar effect. To do so, one can define setup code with whatever variables are wanted
and ensure they are compiled using setupOutputs. Here is an example:
dataNF <- nimbleFunction(

setup = function() {
X <- 1
Y <- as.numeric(c(1, 2))
Z <- matrix(as.numeric(1:4), nrow = 2)
setupOutputs(X, Y, Z)

})

useDataNF <- nimbleFunction(
setup = function(myDataNF) {},
run = function(newX = double(), newY = double(1), newZ = double(2)) {

myDataNF$X <<- newX
myDataNF$Y <<- newY
myDataNF$Z <<- newZ

})

myDataNF <- dataNF()
myUseDataNF <- useDataNF(myDataNF)
myUseDataNF$run(as.numeric(100), as.numeric(100:110),

matrix(as.numeric(101:120), nrow = 2))
myDataNF$X

[1] 100
myDataNF$Y

[1] 100 101 102 103 104 105 106 107 108 109 110
myDataNF$Z

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 101 103 105 107 109 111 113 115 117 119
[2,] 102 104 106 108 110 112 114 116 118 120
myUseDataNF$myDataNF$X

[1] 100
nimbleOptions(buildInterfacesForCompiledNestedNimbleFunctions = TRUE)
CmyUseDataNF <- compileNimble(myUseDataNF)
CmyUseDataNF$run(-100, -(100:110), matrix(-(101:120), nrow = 2))
CmyDataNF <- CmyUseDataNF$myDataNF
CmyDataNF$X

[1] -100

15.5. EXAMPLE: WRITING USER-DEFINED SAMPLERS TO EXTEND NIMBLE’S MCMC ENGINE199

CmyDataNF$Y

[1] -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110
CmyDataNF$Z

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] -101 -103 -105 -107 -109 -111 -113 -115 -117 -119
[2,] -102 -104 -106 -108 -110 -112 -114 -116 -118 -120

You’ll notice that:

• After execution of the compiled function, access to the X, Y, and Z is the same as for
the uncompiled case. This occurs because CmyUseDataNF is an interface to the compiled
version of myUseDataNF, and it provides access to member objects and functions. In this
case, one member object is myDataNF, which is an interface to the compiled version of
myUseDataNF$myDataNF, which in turn provides access to X, Y, and Z. To reduce memory
use, NIMBLE defaults to not providing full interfaces to nested nimbleFunctions like
myUseDataNF$myDataNF. In this example we made it provide full interfaces by setting
the buildInterfacesForCompiledNestedNimbleFunctions option via nimbleOptions to
TRUE. If we had left that option FALSE (its default value), we could still get to the values
of interest using valueInCompiledNimbleFunction(CmyDataNF, 'X')

• We need to take care that at the time of compilation, the X, Y and Z values contain doubles
via as.numeric so that they are not compiled as integer objects.

• The myDataNF could be created in the setup code. We just provided it as a setup argument
to illustrate that option.

15.5 Example: writing user-defined samplers to extend NIM-
BLE’s MCMC engine

One important use of nimbleFunctions is to write additional samplers that can be used in NIMBLE’s
MCMC engine. This allows a user to write a custom sampler for one or more nodes in a model, as
well as for programmers to provide general samplers for use in addition to the library of samplers
provided with NIMBLE.

The following code illustrates how a NIMBLE developer would implement and use a Metropolis-
Hastings random walk sampler with fixed proposal standard deviation.
my_RW <- nimbleFunction(

contains = sampler_BASE,

setup = function(model, mvSaved, target, control) {
proposal standard deviation
scale <- if(!is.null(control$scale)) control$scale else 1
calcNodes <- model$getDependencies(target)

},

run = function() {

200 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

initial model logProb
model_lp_initial <- getLogProb(model, calcNodes)
generate proposal
proposal <- rnorm(1, model[[target]], scale)
store proposal into model
model[[target]] <<- proposal
proposal model logProb
model_lp_proposed <- model$calculate(calcNodes)

log-Metropolis-Hastings ratio
log_MH_ratio <- model_lp_proposed - model_lp_initial

Metropolis-Hastings step: determine whether or
not to accept the newly proposed value
u <- runif(1, 0, 1)
if(u < exp(log_MH_ratio)) jump <- TRUE
else jump <- FALSE

keep the model and mvSaved objects consistent
if(jump) copy(from = model, to = mvSaved, row = 1,

nodes = calcNodes, logProb = TRUE)
else copy(from = mvSaved, to = model, row = 1,

nodes = calcNodes, logProb = TRUE)
},

methods = list(reset = function () {})
)

The name of this sampler function, for the purposes of using it in an
MCMC algorithm, is my_RW. Thus, this sampler can be added to an exisiting MCMC configuration
object conf using:
mcmcConf$addSampler(target = 'x', type = 'my_RW',

control = list(scale = 0.1))

To be used within the MCMC engine, sampler functions definitions must adhere exactly to the
following:

• The nimbleFunction must include the contains statement contains = sampler_BASE.
• The setup function must have the four arguments model, mvSaved, target, control, in

that order.
• The run function must accept no arguments, and have no return value. Further, after execu-

tion it must leave the mvSaved modelValues object as an up-to-date copy of the values and
logProb values in the model object.

• The nimbleFunction must have a member method called reset, which takes no arguments
and has no return value.

The purpose of the setup function is generally two-fold. First, to extract control parameters from
the control list; in the example, the proposal standard deviation scale. It is good practice to

15.5. EXAMPLE: WRITING USER-DEFINED SAMPLERS TO EXTEND NIMBLE’S MCMC ENGINE201

specify default values for any control parameters that are not provided in the control argument,
as done in the example. Second, to generate any sets of nodes needed in the run function. In
many sampling algorithms, as here, calcNodes is used to represent the target node(s) and depen-
dencies up to the first layer of stochastic nodes, as this is precisely what is required for calculating
the Metropolis-Hastings acceptance probability. These probability calculations are done using
model$calculate(calcNodes).

The purpose of the mvSaved modelValues object is to store the state of the model, including both
node values and log probability values, as it exists before any changes are made by the sampler.
This allows restoration of the state when a proposal is rejected, as can be seen in the example
above. When a proposal is accepted, one should copy from the model into the mvSaved object.
NIMBLE’s MCMC engine expects that mvSaved contains an up-to-date copy of model values and
logProb values at the end of the run code of a sampler.

Note that NIMBLE generally expects the user-defined sampler to be defined in the global environ-
ment. If you define it in a function (which would generally be the case if you are using it in the
context of parallelization), one approach would be to assign the user-defined sampler to the global
environment in your function:
assign('sampler_yourSampler', sampler_yourSampler, envir = .GlobalEnv)

15.5.1 User-defined samplers and posterior predictive nodes

As of version 0.13.0, NIMBLE’s handling of posterior predictive nodes in MCMC sampling has
changed in order to improve MCMC mixing. Samplers for nodes that are not posterior predictive
nodes no longer condition on the values of the posterior predictive nodes. This is done by two
changes:

• turning off posterior predictive nodes as dependencies in the use of getDependencies when
building an MCMC, and

• moving all posterior predictive samplers to be last in the order of samplers used in an MCMC
iteration.

The first change calls for careful consideration when writing new samplers. It is done by making
buildMCMC set a NIMBLE system option (described below) that tells getDependencies to ignore
posterior predictive nodes (defined as nodes that are themselves not data and have no data nodes in
their entire downstream (descendant) dependency network) before it builds the samplers (i.e., runs
the setup code of each sampler). That way, the setup code of all samplers that use getDependencies
will automatically comply with the new system.

User-defined samplers that determine dependencies using getDependencies should automatically
work in the new system (although it is worth checking). However if a user-defined sampler manually
specifies dependencies, and if those dependencies include posterior predictive nodes, the MCMC
results could be incorrect. Whether incorrect results occur could depend on other parts of the
model structure connected to node(s) sampled by the user-defined sampler (i.e., the target node(s))
and/or posterior predictive nodes. Therefore, it is strongly recommended that all user-defined
samplers rely on getDependencies to determine which nodes depend on the target node(s).

There are several new NIMBLE system options available to take control of the behavior just de-
scribed.

202 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

• getDependenciesIncludesPredictiveNodes determines whether posterior predictive nodes
are included in results of getDependencies. This defaults to TRUE, so that outside of build-
ing samplers, the behavior of getDependencies should be identical to previous versions of
NIMBLE.

• MCMCusePredictiveDependenciesInCalculations gives the value to which
getDependenciesIncludesPredictiveNodes will be set while building samplers. This de-
faults to FALSE.

• MCMCorderPosteriorPredictiveSamplersLast determines whether posterior predictive sam-
plers are moved to the end of the sampler list. This default to TRUE. Behavior prior to version
0.13.0 corresponds to FALSE.

Here are some examples of how to use these options:

• If you want to have MCMC samplers condition on posterior predictive nodes, do
nimbleOptions(MCMCusePredictiveDependenciesInCalculations = TRUE).

• If you want to get identical MCMC samplers, including their ordering, as in versions prior to
0.13.0, do nimbleOptions(MCMCusePredictiveDependenciesInCalculations = TRUE) and
nimbleOptions(MCMCorderPosteriorPredictiveSamplersLast = FALSE).

• If you want to experiment with the behavior of getDependencies when ignoring posterior pre-
dictive nodes, do nimbleOptions(getDependenciesIncludesPredictiveNodes = FALSE).

15.6 Copying nimbleFunctions (and NIMBLE models)
NIMBLE relies heavily on R’s reference class system. When models, modelValues, and nimbleFunc-
tions with setup code are created, NIMBLE generates a new, customized reference class definition
for each. As a result, objects of these types are passed by reference and hence modified in place
by most NIMBLE operations. This is necessary to avoid a great deal of copying and returning and
having to reassign large objects, both in processing models and nimbleFunctions and in running
algorithms.

One cannot generally copy NIMBLE models or nimbleFunctions (specializations or generators)
in a safe fashion, because of the references to other objects embedded within NIMBLE objects.
However, the model member function newModel will create a new copy of the model from the
same model definition (Section 6.1.3). This new model can then be used with newly instantiated
nimbleFunctions.

The reliable way to create new copies of nimbleFunctions is to re-run the R function called
nimbleFunction and record the result in a new object. For example, say you have a
nimbleFunction called foo and 1000 instances of foo are compiled as part of an algorithm
related to a model called model1. If you then need to use foo in an algorithm for another model,
model2, doing so may work without any problems. However, there are cases where the NIMBLE
compiler will tell you during compilation that the second set of foo instances cannot be built
from the previous compiled version. A solution is to re-define foo from the beginning – i.e. call
nimbleFunction again – and then proceed with building and compiling the algorithm for model2.

15.7 Debugging nimbleFunctions
One of the main reasons that NIMBLE provides an R (uncompiled) version of each nimbleFunction
is for debugging. One can call debug on nimbleFunction methods (in particular the main run

15.8. TIMING NIMBLEFUNCTIONS WITH RUN.TIME 203

method, e.g., debug(mynf$run) and then step through the code in R using R’s debugger. One can
also insert browser calls into run code and then run the nimbleFunction from R.

In contrast, directly debugging a compiled nimbleFunction is difficult, although those familiar
with running R through a debugger and accessing the underlying C code may be able to operate
similarly with NIMBLE code. We often resort to using print statements for debugging compiled
code. Expert users fluent in C++ may also try setting nimbleOptions(pauseAfterWritingFiles
= TRUE) and adding debugging code into the generated C++ files.

15.8 Timing nimbleFunctions with run.time
If your nimbleFunctions are correct but slow to run, you can use benchmarking tools to look for
bottlenecks and to compare different implementations. If your functions are very long-running (say
1ms or more), then standard R benchmarking tools may suffice, e.g. the microbenchmark package
library(microbenchmark)
microbenchmark(myCompiledFunVersion1(1.234),

myCompiledFunVersion2(1.234)) # Beware R <--> C++ overhead!

If your nimbleFunctions are very fast, say under 1ms, then microbenchmark will be inaccurate due
to R-to-C++ conversion overhead (that won’t happen in your actual functions). To get timing
information in C++, NIMBLE provides a run.time function that avoids the R-to-C++ overhead.
myMicrobenchmark <- compileNimble(nimbleFunction(

run = function(iters = integer(0)){
time1 <- run.time({

for (t in 1:iters) myCompiledFunVersion1(1.234)
})
time2 <- run.time({

for (t in 1:iters) myCompiledFunVersion2(1.234)
})
return(c(time1, time2))
returnType(double(1))

}))
print(myMicroBenchmark(100000))

15.9 Clearing and unloading compiled objects
Sometimes it is useful to clear all the compiled objects from a project and unload the shared
library produced by your C++ compiler. To do so, you can use clearCompiled(obj) where
obj is a compiled object such as a compiled model or nimbleFunction (e.g., a compiled MCMC
algorithm). This will clear all compiled objects associated with your NIMBLE project. For example,
if cModel is a compiled model, clearCompiled(cModel) will clear both the model and all associated
nimbleFunctions such as compiled MCMCs that use that model. Be careful, use of clearCompiled
can be dangerous. There is some risk that if you have copies of the R objects that interfaced
to compiled C++ objects that have been removed, and you attempt to use those R objects after
clearing their compiled counterparts, you will crash R. We have tried to minimize that risk, but we
can’t guarantee safe behavior.

204 CHAPTER 15. WRITING NIMBLEFUNCTIONS TO INTERACT WITH MODELS

15.10 Reducing memory usage
NIMBLE can create a lot of objects in its processing, and some of them use R features such as
reference classes that are heavy in memory usage. We have noticed that building large models can
use lots of memory. To help alleviate this, we provide two options, which can be controlled via
nimbleOptions.

As noted above, the option buildInterfacesForCompiledNestedNimbleFunctions defaults to
FALSE, which means NIMBLE will not build full interfaces to compiled nimbleFunctions that ony
appear within other nimbleFunctions. If you want access to all such nimbleFunctions, use the option
buildInterfacesForCompiledNestedNimbleFunctions = TRUE. This will use more memory but
can be useful for debugging.

The option clearNimbleFunctionsAfterCompiling is more drastic, and it is experimental, so
‘buyer beware’. This will clear much of the contents of an uncompiled nimbleFunction object after
it has been compiled in an effort to free some memory. We expect to be able to keep making
NIMBLE more efficient – faster execution and lower memory use – in the future.

Part V

Automatic Derivatives in NIMBLE

205

Chapter 16

Automatic Derivatives

As of version 1.0.0, NIMBLE can automatically provide numerically accurate derivatives of poten-
tially arbitrary order for most calculations in models and/or nimbleFunctions. This feature enables
methods such as Hamiltonian Monte Carlo (HMC, see package nimbleHMC), Laplace approximation,
and fast optimization with methods that use function gradients.

Automatic (or algorithmic) differentiation (AD) refers to the method of carrying derivative infor-
mation through a set of mathematical operations. When done this way, derivatives are numerically
accurate to the precision of the computer. This is distinct from finite difference methods, used by
R packages such as numDeriv (Gilbert and Varadhan, 2019) and pracma (Borchers, 2022), which
approximate derivatives by calculating function values at extremely nearby points. Finite difference
methods are slower and less accurate than AD. It is also distinct from writing separate functions for
each derivative, which can become very complicated and sometimes slower than AD. NIMBLE uses
the CppAD package (Bell, 2022) as its AD engine, following TMB’s success in doing so (Kristensen
et al., 2016). A general reference on AD is Griewank and Walther (2008).

Using a packaged AD algorithm should be as simple as setting buildDerivs=TRUE in the model. On
the other hand, writing new algorithms (as nimbleFunctions) that use AD requires understanding
how the AD system works internally, including what can go wrong. Calls to compileNimble that
include AD features will result in slower C++ compilation.

We will introduce NIMBLE’s AD features step by step, from simply turning them on for a model
to using them in your own nimbleFunctions. We will show you:

1. how to turn on derivatives in a model and use them in Laplace approximation (for Hamiltonian
Monte Carlo (HMC), see 7.11.2).

2. how to modify user-defined functions and distributions to support derivatives.
3. what functions are supported and not supported for derivatives.
4. basics of obtaining derivatives in your own algorithms written as nimbleFunctions.
5. advanced methods of obtaining derivatives in nimbleFunctions, including double-taping.
6. how to get derivatives involving model calculations.
7. automatic parameter transformations to give any model an unconstrained parameter space

for algorithms to work in.
8. an example showing use of nimble’s derivatives for maximum likelihood estimation.

First, make sure to set the option to enable derivative features. This should be TRUE by default,

207

208 CHAPTER 16. AUTOMATIC DERIVATIVES

but just in case:
nimbleOptions(enableDerivs = TRUE)

16.1 How to turn on derivatives in a model
To allow algorithms to use automatic derivatives for a model, include buildDerivs=TRUE in
the call to nimbleModel. If you want derivatives to be set up for all models, you can run
nimbleOptions(buildModelDerivs = TRUE) and omit the buildDerivs argument.

We’ll re-introduce the simple Poisson Generalized Linear Mixed Model (GLMM) example model
from 7.11.2.1 and use Laplace approximation on it. There will be 10 groups (i) of 5 observations
(j) each. Each observation has a covariate, X, and each group has a random effect ran_eff. Here
is the model code:
model_code <- nimbleCode({

priors
intercept ~ dnorm(0, sd = 100)
beta ~ dnorm(0, sd = 100)
sigma ~ dhalfflat()
random effects and data
for(i in 1:10) {
random effects
ran_eff[i] ~ dnorm(0, sd = sigma)
for(j in 1:5) {

data
y[i,j] ~ dpois(exp(intercept + beta*X[i,j] + ran_eff[i]))

}
}

})

Note that we changed the prior on sigma to avoid having an upper bound. Prior distributions are
not included in maximum likelihood using the Laplace approximation but do indicate the range of
valid values. We recommend caution in using priors for variance component parameters (standard
deviations, variances, precisions) that have a finite upper bound (e.g., sigma ~ dunif(0, 100)),
because the probit transformation applied in that case may result in poor optimization performance.

We’ll simulate some values for X.
set.seed(123)
X <- matrix(rnorm(50), nrow = 10)

Next, we build the model, including buildDerivs=TRUE.
model <- nimbleModel(model_code, constants = list(X = X), calculate = FALSE,

buildDerivs = TRUE) # Here is the argument needed for AD.

16.1.1 Finish setting up the GLMM example
As preparation for the Laplace examples below, we need to finish setting up the GLMM. We could
have provided data in the call to nimbleModel, but instead we will simulate it using the model

16.2. HOW TO USE LAPLACE APPROXIMATION AND ADAPTIVE GAUSS-HERMITE QUADRATURE209

itself. Specifically, we will set parameter values, simulate data values, and then set those as the
data to use.
model$intercept <- 0
model$beta <- 0.2
model$sigma <- 0.5
model$calculate() # This will return NA because the model is not fully initialized.

[1] NA
model$simulate(model$getDependencies('ran_eff'))
model$calculate() # Now the model is fully initialized: all nodes have valid values.

[1] -78.44085
model$setData('y') # Now the model has y marked as data, with values from simulation.

If you are not very familiar with using a nimble model, that might have been confusing, but it was
just for setting up the example.

Finally, we will make a compiled version of the model.
Cmodel <- compileNimble(model)

16.2 How to use Laplace approximation and adaptive Gauss-
Hermite quadrature

Next we will show how to use nimble’s Laplace approximation, which uses derivatives internally,
to get maximum (approximate) likelihood estimates for the GLMM model above. Laplace approx-
imation is equivalent to first-order adaptive Gauss-Hermite quadrature, which is also available,
although here we will focus on Laplace approximation only. What Laplace approximation ap-
proximates in this context is the integral over continuous random effects needed to calculate the
likelihood. Hence, it gives an approximate likelihood (often quite accurate) that can be used for
maximum likelihood estimation. Note that the Laplace approximation uses second derivatives,
and the gradient of the Laplace approximation (used for finding the MLE efficiently) uses third
derivatives. These are described in detail by Skaug and Fournier (2006) and Fournier et al. (2012).

To create a Laplace approximation specialized to the parameters of interest for this model, we
use the nimbleFunction buildLaplace. For many models, the setup code in buildLaplace will
automatically determine the random effects to be integrated over and the associated nodes to
calculate. In fact, if you omit the parameter nodes, it will assume that all top-level nodes in the
model should be treated as parameters. If fine-grained control is needed, these various sets of nodes
can be input directly into buildLaplace. To see what default handling of nodes is being done for
your model, use setupMargNodes with the same node inputs as buildLaplace.
glmm_laplace <- buildLaplace(model, c('intercept','beta','sigma'))
Cglmm_laplace <- compileNimble(glmm_laplace, project = model)

Now we are ready to use some of the methods provided by buildLaplace. These include calcu-
lating the Laplace approximation for some input parameter values, calculating its gradient, and
maximizing the Laplace-approximated likelihood. Here we will show detailed steps for using the

210 CHAPTER 16. AUTOMATIC DERIVATIVES

Laplace approximation, but see help(runLaplace) to combine the basic steps into one call.
Get the Laplace approximation for one set of parameter values.
Cglmm_laplace$calcLaplace(c(0, 0, 1))

[1] -65.57247
Cglmm_laplace$gr_Laplace(c(0, 0, 1)) # Get the corresponding gradient.

[1] -1.866489 8.001907 -4.059747
MLE <- Cglmm_laplace$findMLE(c(0, 0, 1)) # Find the (approximate) MLE.
MLE$par # MLE parameter values

[1] -0.1492192 0.1934659 0.5703621
MLE$value # MLE log likelihood value

[1] -63.44875

The final outputs show the MLE for intercept, beta, and sigma, followed by the maximum
(approximate) likelihood.

More information about the MLE can be obtained in two ways. The summary method can give
estimated random effects and standard errors as well as the variance-covariance matrix for the
parameters and/or the random effects. The summaryLaplace function returns similar information
but with names included in a more useful way. For example:
Cglmm_laplace$summary(MLE)$randomEffects$estimates

[1] -0.33711665 -0.02963529 0.40579361 1.04775648 -0.36731223 0.26912090
[7] -0.54951124 -0.11865786 0.10009745 -0.04409902
summaryLaplace(Cglmm_laplace, MLE)$params

estimate se
intercept -0.1492192 0.2465037
beta 0.1934659 0.1467228
sigma 0.5703621 0.2066538

buildLaplace actually offers several choices in how computations are done, differing in how they
use double taping for derivatives or not. In some cases one or another choice might be more efficient.
See help(buildLaplace) if you want to explore it further.

Finally, let’s confirm that it worked by comparing to results from package glmmTMB. In this case,
nimble’s Laplace approximation is faster than glmmTMB (on the machine used here), but that is not
the point of this example. Here our interest is in checking that nimble’s Laplace approximation
worked correctly in a case where we have an established tool such as glmmTMB.
library(glmmTMB)
y <- as.numeric(model$y) # Re-arrange inputs for call to glmmTMB
X <- as.numeric(X)
group <- rep(1:10, 5)
data <- as.data.frame(cbind(X,y,group))

16.3. HOW TO SUPPORT DERIVATIVES IN USER-DEFINED FUNCTIONS AND DISTRIBUTIONS211

tmb_fit <- glmmTMB(y ~ X + (1 | group), family = poisson, data = data)
summary(tmb_fit)

Family: poisson (log)
Formula: y ~ X + (1 | group)
Data: data
##
AIC BIC logLik deviance df.resid
132.9 138.6 -63.4 126.9 47
##
Random effects:
##
Conditional model:
Groups Name Variance Std.Dev.
group (Intercept) 0.3253 0.5703
Number of obs: 50, groups: group, 10
##
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.1492 0.2465 -0.605 0.545
X 0.1935 0.1467 1.319 0.187
logLik(tmb_fit)

'log Lik.' -63.44875 (df=3)

The results match within numerical tolerance typical of optimization problems. Specifically, the co-
efficients for (Intercept) and X match nimble’s Intercept and beta, the random effects standard
deviation for group matches nimble’s sigma, and the standard errors match.

16.3 How to support derivatives in user-defined functions and dis-
tributions

It is possible to activate derivative support for a user-defined function or distribution used in a
model. Simply set buildDerivs=TRUE in nimbleFunction.

Here is an extremely toy example. Let’s say we want a model with one node that follows a
user-defined distribution, which will happen to be the same as dnorm (a normal distribution) for
illustration.

The model code is:
toyCode <- nimbleCode({

x ~ d_my_norm(mean = mu, sd = sigma)
mu ~ dunif(-10, 10)
sigma ~ dunif(0, 5)

})

The user-defined distribution is:

212 CHAPTER 16. AUTOMATIC DERIVATIVES

d_my_norm <- nimbleFunction(
run = function(x = double(), mean = double(), sd = double(),

log = integer(0, default = 0)) {
ans <- -log(sqrt(2*pi)*sd) - 0.5*((x-mean)/sd)^2
if(log) return(ans)
return(exp(ans))
returnType(double())

},
buildDerivs=TRUE

)

Now we can build the model with buildDerivs=TRUE and compile it:
Don't worry about the warnings from nimbleModel in this case.
toyModel <- nimbleModel(toyCode, inits = list(mu = 0, sigma = 1, x = 0),

buildDerivs = TRUE)

Now toyModel can be used in algorithms such as HMC and Laplace approximation, as above, or
new ones you might write, as below.

Note that in models, all model variables are implemented as doubles, even when they will actually
only ever take integer values. Therefore all arguments to user-defined distributions and functions
used in models should be declared as type double. The ADbreak method discussed in Section 16.5.2
should be used if you want to stop derivative tracking on a model variable.

16.4 What operations are and aren’t supported for AD
Much of the math supported by NIMBLE will work for AD. Here are some details on what is and
isn’t supported, as well as on some options to control how linear algebra is handled.

Features that are not supported for AD include:

• cumulative (“p”) and quantile (“q”) functions for distributions;
• truncated distributions (because they use cumulative distribution functions), for any deriva-

tives;
• discrete distributions, for derivatives with respect to the random variable;
• random number generation;
• some specific functions including step, %% (mod), eigen, svd, and besselK; and
• most model operations (other than model$calculate, which is supported) including

model$calculateDiff, model$simulate, model$getBound, and model$getParam.

Note that functions and distributions that are not supported can still be used in a model, as long
as no algorithm tries to take derivatives with respect to node(s) that is (are) not supported. For
example, x ~ dcat(p[1:3]) declares x to be a discrete random variable following a categorical
distribution. An algorithm can use derivatives with respect to p[1:3] (or with respect to parent
nodes of p[1:3]) because the calculation of the log probability of x given p[1:3] is continuous
with respect to p. However, derivatives with respect to x will not work. In the case of truncated
distributions, derivatives with respect to neither the parameters nor to the random variable are
supported.

Some details on what is supported include:

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 213

• round, floor, ceil, and trunc are all supported with derivatives defined to be zero every-
where.

• pow(a, b) requires positive a and b. Note that if b is coded as a (possibly negative) integer,
pow_int will be used. For example pow(tau, -2) will be converted to pow_int(tau, -2).

• A new function pow_int(a, b) returns pow(a, round(b)) and thus sets all derivatives with
respect to b to zero. This allows valid derivatives with respect to a even if it takes a negative
value.

For the linear algebra functions %*%, chol, forwardsolve, backsolve, and inverse, there are
special extensions provided by NIMBLE for CppAD called (in CppAD jargon) “atomics”. By
default, these atomics will be used and often improve efficiency. There may be cases where they
decrease efficiency, which might include when the matrix operands are small or contain many zeros.
To compare results with and without use of the atomics, they can be turned off with a set of
options:
nimbleOptions(useADmatMultAtomic = FALSE) # for %*%
nimbleOptions(useADcholAtomic = FALSE) # for chol
nimbleOptions(useADmatInverseAtomic = FALSE) # for inverse
nimbleOptions(useADsolveAtomic = FALSE) # for forwardsolve and backsolve

When a linear algebra atomic is turned off, the AD system simply uses all the scalar operations
that compose the linear algebra operation.

Another important feature of AD is that sometimes values get “baked in” to AD calculations,
meaning they are used and permanently retained from the first set of calculations and then can’t
have their value changed later (unless an algorithm does a “reset”, described below). For people
writing user-defined distributions and functions, a brief summary of what can get baked in includes:

• the extent (iteration values) of any for-loops.
• values of any arguments that are not of type ‘double’, including e.g. the ‘log’ argument in

d_my_norm. (‘d’ functions called from models always have log = TRUE, so in that case it is
not a problem.)

• the evaluation path followed by any if-then-else calls.
• values of any integer indices.

See below for more thorough explanations.

16.5 Basics of obtaining derivatives in nimbleFunctions

Now that we have seen a derivative-enabled algorithm work, let’s see how to obtain derivatives in
methods you write. From here on, this part of the chapter is oriented towards algorithm developers.
We’ll start by showing how derivatives work in nimbleFunctions without using a model. The AD
system allows you to obtain derivatives of one function or method from another.

Let’s get derivatives of the function y = exp(-d * x) where x is a vector, d is a scalar, and y is a
vector.
derivs_demo <- nimbleFunction(

setup = function() {},
run = function(d = double(), x = double(1)) {
return(exp(-d*x))

214 CHAPTER 16. AUTOMATIC DERIVATIVES

returnType(double(1))
},
methods = list(
derivsRun = function(d = double(), x = double(1)) {

wrt <- 1:(1 + length(x)) # total length of d and x
return(derivs(run(d, x), wrt = wrt, order = 0:2))
returnType(ADNimbleList())

}
),
buildDerivs = 'run'

)

Here are some things to notice:

• Having setup code allows the nimbleFunction to have multiple methods (i.e. to behave like
a class definition in object-oriented programming). Some nimbleFunctions don’t have setup
code, but setup code is required when there will be a call to derivs. If, as here, you
don’t need the setup to do anything, you can simply use setup=TRUE, which is equivalent to
setup=function(){}.

• Any arguments to run that are real numbers (i.e. regular double precision numbers, but not
integers or logicals) will have derivatives tracked when called through derivs.

• The “with-respect-to” (wrt) argument gives indices of the arguments for which you want
derivatives. In this case, we’re including all elements of d and X. The indices form one
sequence over all arguments.

• order is a vector of derivative orders to return, which can include any of 0 (the function value,
not a derivative!), 1 (1st order), or 2 (2nd order). Higher-order derivatives can be obtained
by double-taping, described below.

• Basics of nimbleFunction programming are covered in Chapters 11-15. These include type
declarations (double() for scalar, double(1) for vector), the distinction between setup code
and run code, and how to write more methods (of which run is simply a default name when
there is only one method).

• derivs can alternatively be called nimDerivs. In fact the former will be converted to the
latter internally.

Let’s see this work.
my_derivs_demo <- derivs_demo()
C_my_derivs_demo <- compileNimble(my_derivs_demo)
d <- 1.2
x <- c(2.1, 2.2)
C_my_derivs_demo$derivsRun(d, x)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] 0.08045961 0.07136127
Field "jacobian":
[,1] [,2] [,3]
[1,] -0.1689652 -0.09655153 0.00000000
[2,] -0.1569948 0.00000000 -0.08563352

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 215

Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] 0.3548269 0.1222986 0
[2,] 0.1222986 0.1158618 0
[3,] 0.0000000 0.0000000 0
##
, , 2
##
[,1] [,2] [,3]
[1,] 0.3453885 0 0.1170325
[2,] 0.0000000 0 0.0000000
[3,] 0.1170325 0 0.1027602

We can see that using order = 0:2 results in the the value (“0th” order result, i.e. the value
returned by run(d, x)), the Jacobian (matrix of first order derivatives), and the Hessian (array
of second order derivatives). The run function here has taken three inputs (in the order d, x[1],
x[2]) and returned two outputs (the first and second elements of exp(-d*x)).

The i-th Jacobian row contains the first derivatives of the i-th output with respect to d, x[1], and
x[2], in that order. The first and second indices of the Hessian array follow the same ordering as
the columns of the Jacobian. The third index of the Hessian array is for the output index. For
example, hessian[3,1,2] is the second derivative of the second output value (third index = 2)
with respect to x[2] (first index = 3) and d (second index = 1).

(Although it may seem inconsistent to have the output index be first for Jacobian and last for
Hessian, it is consistent with some standards for how these objects are created in other packages
and used mathematically.)

When a function being called for derivatives (run in this case) has non-scalar arguments (x in
this case), the indexing of inputs goes in order of arguments, and in column-major order within
arguments. For example, if we had arguments x = double(1) and z = double(2) (a matrix), the
inputs would be ordered as x[1], x[2], …, z[1, 1], z[2, 1], …, z[1, 2], z[2, 2], …, etc.

16.5.1 Checking derivatives with uncompiled execution
Derivatives can also be calculated in uncompiled execution, but they will be much slower and
less accurate: slower because they are run in R, and less accurate because they use finite element
methods (from packages pracma and/or numDeriv). Uncompiled execution is mostly useful for
checking that compiled derivatives are working correctly, because although they are slower and less
accurate, they are also much simpler internally and thus provide good checks on compiled results.
For example:
my_derivs_demo$derivsRun(d, x)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] 0.08045961 0.07136127
Field "jacobian":
[,1] [,2] [,3]

216 CHAPTER 16. AUTOMATIC DERIVATIVES

[1,] -0.1689652 -0.09655153 0.00000000
[2,] -0.1569948 0.00000000 -0.08563352
Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] 0.3548269 0.1222986 0
[2,] 0.1222986 0.1158618 0
[3,] 0.0000000 0.0000000 0
##
, , 2
##
[,1] [,2] [,3]
[1,] 0.3453885 0 0.1170325
[2,] 0.0000000 0 0.0000000
[3,] 0.1170325 0 0.1027602

We can see that the results are very close, but typically not identical, to those from the compiled
version.

16.5.2 Holding some local variables out of derivative tracking
Sometimes one wants to omit tracking of certain variables in derivative calculations. There are
three ways to do this: naming variables in an ignore set; ensuring a variable’s type is integer (not
simply numeric with an integer value) or logical; or using the ADbreak function. The differences
between these have to do with the fact that the variable types used for tracking derivatives in
C++ are special. The ignore method marks a variable as a regular type rather than a derivative-
tracking type. The integer or logical method results in a regular (integer or logical) variable
simply because those types are never used in derivative-tracking. The ADbreak method assigns one
derivative-tracked variable to another (derivative-tracked or not) variable while severing any actual
derivative tracking between them.

16.5.2.1 Holding variables out of derivative tracking using ignore

Here is an example of ignore, while ADbreak is described below.

Say that we write exp(-d*x) using a for-loop instead of a vectorized operation as above. It wouldn’t
make sense to track derivatives for the for-loop index (i), and indeed it would cause compileNimble
to fail. The code to use a for-loop index i while telling derivs to ignore derivatives for i is:
derivs_demo2 <- nimbleFunction(

setup = function() {},
run = function(d = double(), x = double(1)) {
ans <- numeric(length = length(x))
for(i in 1:length(x))

ans[i] <- exp(-d*x[i])
return(ans)
returnType(double(1))

},
methods = list(

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 217

derivsRun = function(d = double(), x = double(1)) {
wrt <- 1:(1 + length(x)) # total length of d and x
return(derivs(run(d, x), wrt = wrt, order = 0:2))
returnType(ADNimbleList())

}
),
buildDerivs = list(run = list(ignore = 'i'))

)

We can see that it gives identical results as above, looking at only the Jacobian to keep the output
short.
my_derivs_demo2 <- derivs_demo2()
C_my_derivs_demo2 <- compileNimble(my_derivs_demo2)
d <- 1.2
x <- c(2.1, 2.2)
C_my_derivs_demo2$derivsRun(d, x)$jacobian

[,1] [,2] [,3]
[1,] -0.1689652 -0.09655153 0.00000000
[2,] -0.1569948 0.00000000 -0.08563352

One might think it should be obvious that i should not be involved in derivatives, but sometimes
math is actually done with a for-loop index. Another way to ensure derivatives won’t be tracked
for i would be to write i <- 1L, before the loop. By assigning a definite integer to i, it will
be established as definitely of integer type throughout the function and thus not have derivatives
tracked. (If you are not familiar with the L in R, try storage.mode(1L) vs storage.mode(1).)
The only way to mark a double-precision variable to be a regular (not derivative-tracking) type is
to name it in the ignore set.

Another case where the ignore or integer methods are useful is in determining the start and/or
end values of a for-loop. If you need for(i in 1:n) {...} where you previously set n <-
length(some_values), you need n to be a non-derivative tracking type. You can achieve this either
by including "n" in the ignore set or by doing n <- 0L before setting n <- length(some_values),
to establish with certainty that n is an integer.

Because derivatives are not tracked for integer or logical variables, arguments to run that have
integer or logical types will not have derivatives tracked. You can also include an argument
name (even for a double-precision argument) in the ignore set. In any of these cases, you must then
be careful in passing a non-derivative tracking type to another function. If passed as an argument
to another function, the argument in that function must also be a non-derivative tracking type
(integer, logical, or in the ignore set).

If you need to assign a value from a derivative-tracked variable to a non-derivative tracked variable,
you must use ADbreak (see the next subsection for more on this). For example if y is in the ignore
set, y <- ADbreak(x) assigns the value of x (with no derivative tracking) to y. You can also do
y <- ADbreak(x) if y is not in the ignore set, and the result is that y has derivative tracking
and is initialized to the value of x, but all derivatives of y with respect to x are 0. This severs
the derivative (chain-rule) relationship between x and any subsequent calculations with y, but it
does allow y to be used where a derivative-tracking variable is expected (e.g. as another function’s

218 CHAPTER 16. AUTOMATIC DERIVATIVES

argument). Derivative-tracked variables that are severed by ADbreak will be “baked in”
to the AD tape from the first call. This means their values will be constants and will not
change on subsequent calls even if the input values change, unless you use the reset feature.
See section 16.5.4 to learn more about “baked in” values.

Only some math operations will work with a mix of derivative-tracking and regular variables.
For example, most scalar operations will work with one argument of each kind. However, more
complicated operations such as matrix multiplication require the arguments to be either both
derivative-tracking or both regular.

Note the more elaborate value for buildDerivs. In the previous example, this was just a character
vector. Here it is a named list, with each element itself being a list of control values. The control
value ignore is a character vector of variable names to ignore in derivative tracking. buildDerivs
= 'run' is equivalent to buildDerivs = list(run = list()).

16.5.2.2 Holding function arguments (including variables passed from a model) out
of derivative tracking

Derivatives can be tracked through function calls, including from a model to a user-defined distri-
bution or function (see 16.3 and 16.5.3). However, if one function is tracking derivatives for x and
passes x as an argument to another function where it is non-derivative tracking type, there will be
an error (most likely from compileNimble). The problem is that, as noted above, the C++ variable
types used for tracking derivatives or not are different and are not automatically interchangeable.
Importantly, variables passed from models are always derivative-tracking (even if they will always
have integer values).

For this situation, you can use ADbreak to stop derivative tracking. For example, if one has a
nimbleFunction argument x, one would do x_noDeriv <- ADbreak(x) and then use x_noDeriv
in subsequent calculations. This “breaks” derivative tracking in the sense that the derivative of
x_noDeriv with respect to x is 0. However, it is important to realize that x_noDeriv is still
a derivative-tracking type (unless it is in the ignore set), so it can be passed to other functions
involved in the derivative-tracked operations. And, on the other hand, it can’t be used as a for-loop
index or as the start of end of a for-loop extent. As noted above, if the values of x or x_noDeriv
are used in further calculations, their values will be “baked in” to the tape.

Including "x" in the ignore set won’t work in this case because, if x is a function argument, its
type will then be changed to be a non-derivative type. If a derivative-tracking type is then passed
as the value for x there will be a mismatch in types. Since variables passed from models always
allow derivative-tracking, one should not ignore the corresponding function arguments.

Note that ADbreak only works for scalars. If you need to break AD tracking for a non-scalar, you
have to write a for-loop to apply ADbreak for each element. For example:
x_noDeriv <- nimNumeric(length(x), init=FALSE)
i <- 1L
for(i in 1:length(x)) x_noDeriv[i] <- ADbreak(x[i])

In summary:

• Use the ignore set or explicit creation of variables as integer or logical to create regular
variable types.

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 219

• If you need an argument to have derivative-tracking (as is always the case when called from
a model) but derivatives with respect to it don’t make sense, use ADbreak to assign to a
local variable that will “bake in” the value and remove it from derivative tracking. The
local variable can be regular (if it is in the ignore list or was created first as an integer or
logical) or derivative-tracking.

16.5.3 Using AD with multiple nimbleFunctions
Derivatives will be tracked through whatever series of calculations occur in a method, possibly
including calls to other methods or nimbleFunctions that have buildDerivs set. Let’s look at an
example where we have a separate function to return the element-wise square root of an input
vector. The net calculation for derivatives will be sqrt(exp(-d*x))).
nf_sqrt <- nimbleFunction(

run = function(x = double(1)) {
return(sqrt(x))
returnType(double(1))

},
buildDerivs = TRUE

)

derivs_demo3 <- nimbleFunction(
setup = function() {},
run = function(d = double(), x = double(1)) {
ans <- exp(-d*x)
ans <- nf_sqrt(ans)
return(ans)
returnType(double(1))

},
methods = list(
derivsRun = function(d = double(), x = double(1)) {

wrt <- 1:(1 + length(x)) # total length of d and x
return(derivs(run(d, x), wrt = wrt, order = 0:2))
returnType(ADNimbleList())

}
),
buildDerivs = 'run'

)

And then let’s see it work:
my_derivs_demo3 <- derivs_demo3()
C_my_derivs_demo3 <- compileNimble(my_derivs_demo3)
d <- 1.2
x <- c(2.1, 2.2)
C_my_derivs_demo3$derivsRun(d, x)$jacobian

[,1] [,2] [,3]
[1,] -0.2978367 -0.1701924 0.0000000
[2,] -0.2938488 0.0000000 -0.1602812

220 CHAPTER 16. AUTOMATIC DERIVATIVES

Note that for a nimbleFunction without setup code, one can say buildDerivs=TRUE, buildDerivs
= 'run', or buildDerivs = list(run = list()). One can’t take derivatives of nf_sqrt on its
own, but it can be called by a method of a nimbleFunction that can have its derivatives taken
(e.g. the run method of a derivs_demo3 object).

16.5.4 Understanding more about how AD works: taping of operations
At this point, it will be helpful to grasp more of how AD works and its implementation in nimble
via the CppAD library (Bell, 2022). AD methods work by following a set of calculations multiple
times, sometimes in reverse order.

For example, the derivative of 𝑦 = exp(𝑥2) can be calculated (by the chain rule of calculus) as the
derivative of 𝑦 = exp(𝑧) (evaluated at 𝑧 = 𝑥2) times the derivative of 𝑧 = 𝑥2 (evaluated at 𝑥). This
can be calculated by first going through the sequence of steps for the value, i.e. (i) 𝑧 = 𝑥2, (ii)
𝑦 = exp(𝑧), and then again for the derivatives, i.e. (i) 𝑑𝑧 = 2𝑥(𝑑𝑥), (ii) 𝑑𝑦 = exp(𝑧)𝑑𝑧. These steps
determine the instantaneous change 𝑑𝑦 that results from an instantaneous change 𝑑𝑥. (It may be
helpful to think of both values as a function of a third variable such as 𝑡. Then we are determining
𝑑𝑦/𝑑𝑡 as a function of 𝑑𝑥/𝑑𝑡.) In CppAD, the basic numeric object type (double) is replaced with
a special type and corresponding versions of all the basic math operations so that those operations
can track not just the values but also derivative information.

The derivative calculations typically need the values. For example, the derivative of exp(𝑧) is (also)
exp(𝑧), for which the value of 𝑧 is needed, which in this case is 𝑥2, which is one of the steps in
calculating the value of exp(𝑥2). (In fact, in this case the derivative of exp(𝑧) can more simply
use the value of 𝑦 itself.) Hence, values are calculated before derivatives, which are calculated by
stepping through the calculation sequence a second time

What was just described is called forward mode in AD. The derivatives can also be calculated
by working through exp(𝑥2) in reverse mode. This is often less familiar to graduates of basic
calculus courses. In reverse mode, one determines what instantaneous change 𝑑𝑥 would give an
instantaneous change 𝑑𝑦. For example, given a value of 𝑑𝑦, we can calculate 1/𝑑𝑧 = exp(𝑧)/𝑑𝑦 and
then (1/𝑑𝑥) = (𝑥2)/𝑑𝑧. Again, values are calculated first, followed by derivatives in a second pass
through the calculation sequence, this time in reverse order.

In general, choice of forward mode versus reverse mode has to do with the lengths of inputs and
outputs and possibly specific operations involved. In nimble, some reasonable choices are used.

In CppAD, the metaphor of pre-digital technology – magnetic tapes – is used for the set of operations
in a calculation. When a line with nimDerivs is first run, the operations in the function it calls are
taped and then re-used – played – in forward and/or reverse orders to obtain derivatives. Hence we
will refer to the AD tape in explaining some features below. It is also possible to reset (i.e. re-record)
the AD tape used for a particular nimDerivs call.

When taped operations are played, the resulting operations can themselves be taped. We call this
meta-taping or double-taping. It is useful because it can sometimes boost efficiency and it can be
used to get third and higher order derivatives.

16.5.5 Resetting a nimDerivs call
The first time a call to nimDerivs runs, it records a tape of the operations in its first argu-
ment (run(d, x) in the examples here). On subsequent calls, it re-uses that tape without re-

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 221

recording it. That means subsequent calls are usually much faster. It also means that subse-
quent calls must use the same sized arguments as the recorded call. For example, we can use
C_my_derivs_demo$derivsRun with new arguments of the same size(s):
C_my_derivs_demo$derivsRun(-0.4, c(3.2, 5.1))

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] 3.596640 7.690609
Field "jacobian":
[,1] [,2] [,3]
[1,] -11.50925 1.438656 0.000000
[2,] -39.22211 0.000000 3.076244
Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] 36.829591 -8.2003386 0
[2,] -8.200339 0.5754624 0
[3,] 0.000000 0.0000000 0
##
, , 2
##
[,1] [,2] [,3]
[1,] 200.03275 0 -23.379452
[2,] 0.00000 0 0.000000
[3,] -23.37945 0 1.230497

However, if we call C_my_derivs_demo$derivsRun with length(x) different from 2, the result will
be garbage. If we need to change the size of the arguments, we need to re-record the tape. This is
done with the reset argument.

Here is a slightly more general version of the derivs_demo allowing a user to reset the tape. It also
takes order and wrt as arguments instead of hard-coding them.
derivs_demo4 <- nimbleFunction(

setup = function() {},
run = function(d = double(), x = double(1)) {
return(exp(-d*x))
returnType(double(1))

},
methods = list(
derivsRun = function(d = double(), x = double(1),

wrt = integer(1), order = integer(1),
reset = logical(0, default=FALSE)) {

return(derivs(run(d, x), wrt = wrt, order = order, reset = reset))
returnType(ADNimbleList())

}
),
buildDerivs = 'run'

222 CHAPTER 16. AUTOMATIC DERIVATIVES

)

Now we will illustrate the use of reset. To make shorter output, we’ll request only the Jacobian.
my_derivs_demo4 <- derivs_demo4()
C_my_derivs_demo4 <- compileNimble(my_derivs_demo4)
d <- 1.2
x <- c(2.1, 2.2)
On the first call, reset is ignored because the tape must be recorded.
C_my_derivs_demo4$derivsRun(d, x, 1:3, 1)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
numeric(0)
Field "jacobian":
[,1] [,2] [,3]
[1,] -0.1689652 -0.09655153 0.00000000
[2,] -0.1569948 0.00000000 -0.08563352
Field "hessian":
<0 x 0 x 0 array of double>
##
On the second call, reset=FALSE, so the tape is re-used.
C_my_derivs_demo4$derivsRun(-0.4, c(3.2, 5.1), 1:3, 1)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
numeric(0)
Field "jacobian":
[,1] [,2] [,3]
[1,] -11.50925 1.438656 0.000000
[2,] -39.22211 0.000000 3.076244
Field "hessian":
<0 x 0 x 0 array of double>
##
If we need a longer X, we need to say reset=TRUE
C_my_derivs_demo4$derivsRun(1.2, c(2.1, 2.2, 2.3), 1:4, 1, reset=TRUE)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
numeric(0)
Field "jacobian":
[,1] [,2] [,3] [,4]
[1,] -0.1689652 -0.09655153 0.00000000 0.00000000
[2,] -0.1569948 0.00000000 -0.08563352 0.00000000
[3,] -0.1455711 0.00000000 0.00000000 -0.07595012
Field "hessian":
<0 x 0 x 0 array of double>
##

16.5. BASICS OF OBTAINING DERIVATIVES IN NIMBLEFUNCTIONS 223

Now we can use with reset=FALSE with X of length 3
C_my_derivs_demo4$derivsRun(-0.4, c(3.2, 5.1, 4.5), 1:4, 1)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
numeric(0)
Field "jacobian":
[,1] [,2] [,3] [,4]
[1,] -11.50925 1.438656 0.000000 0.000000
[2,] -39.22211 0.000000 3.076244 0.000000
[3,] -27.22341 0.000000 0.000000 2.419859
Field "hessian":
<0 x 0 x 0 array of double>
##

You could also make multiple instances of derivs_demo4 and keep track of the argument sizes
currently recorded for each one.

Other important situations where you need to reset a tape are when values that are otherwise
“baked in” to an AD tape need to be changed. By “baked in”, we mean that some values are
permanently part of a tape until it is reset.

16.5.5.1 What gets baked into AD tapes until reset=TRUE

Specifically, you need to reset a tape when:

• the extent of any for-loops change. For-loops are not natively recorded, but rather each
operation done in execution of the for-loop is recorded. (This is sometimes called “loop
unrolling”.) Therefore, in for(i in start:end), the values of start and end are in effect
baked into a tape.

• the outcomes of any if-then-else conditions in a nimbleFunction are changed.
• values of any integer or logical inputs change.
• values of any variables with derivative tracking severed ADbreak change. (See 16.5.2.)
• any other member data used in calculations changes. It is possible to create a variable in

the setup function and use it in methods such as run. Such variables become member data
in the terminology of object-oriented programming. Such variables will not have derivatives
tracked if used in a function while it is being taped, so the values will be baked into the tape.
This can be useful if you understand what is happening or confusing if not.

Uncompiled execution of derivs ignores the reset argument.

16.5.6 A note on performance benchmarking

If you are interested in measuring the performance of AD in nimble, please remember that the first
call to nimDerivs and any subsequent call with reset=TRUE will be slower, often much slower, that
subsequent calls.

224 CHAPTER 16. AUTOMATIC DERIVATIVES

16.6 Advanced uses: double taping

Suppose you are interested only in the Jacobian, not in the value, and/or want only some elements
of the Jacobian. You might still need the value, but obtaining the value alone from an AD tape
(i.e. from derivs) will be slower than obtaining it by simply calling the function. On the other
hand, AD methods need to calculate the value before calculating first order derivatives, so the value
will be calculated anyway. However, in some cases, some of the steps of value calculations aren’t
really needed if one only wants, say, first-order derivatives. In addition, if not all elements of the
Jacobian are wanted, then some unnecessary calculations will be done internally that one might
want to avoid.

A way to cut out unnecessary calculations is to record a tape of a tape, which we call double taping.
Let’s see an example before explaining further.
derivs_demo5 <- nimbleFunction(

setup = function() {},
run = function(d = double(), x = double(1)) {
return(exp(-d*x))
returnType(double(1))

},
methods = list(
jacobian_run_wrt_d = function(d = double(), x = double(1),

wrt = integer(1),
reset = logical(0, default=FALSE)) {

ans <- derivs(run(d, x), wrt = wrt, order = 1, reset = reset)
jac <- ans$jacobian[,1] # derivatives wrt 'd' only
return(jac)
returnType(double(1))

},
derivsJacobian = function(d = double(), x = double(1),

wrt = integer(1),
order = integer(1),
reset = logical(0, default = FALSE)) {

innerWrt <- nimInteger(value = 1, length = 1)
ans <- nimDerivs(jacobian_run_wrt_d(d, x, wrt = innerWrt, reset = reset),

wrt = wrt, order = order, reset = reset)
return(ans)
returnType(ADNimbleList())

}
),
buildDerivs = c('run', 'jacobian_run_wrt_d')

)

What is happening in this code? jacobian_run_wrt_d is a method that returns part of the Jacobian
of run(d, x), specifically the first column, which contains derivatives with respect to d. It happens
to use AD to do it, but otherwise it is just some function with inputs d and x and a vector output.
(Arguments that are integer or logical do not have derivatives tracked.) derivsJacobian calculates
derivatives of jacobian_run_wrt_d. This means that the value returned by derivsJacobian will
be the value of jacobian_run_wrt_d, which comprises the first derivatives of run with respect to

16.7. DERIVATIVES INVOLVING MODEL CALCULATIONS 225

d. The jacobian returned by derivsJacobian will contain second derivatives of run with respect
to d and each of d, x[1], and x[2]. And the hessian returned by derivsJacobian will contain
some third derivatives of run. Notice that buildDerivs now includes jacobian_run_wrt_d.

Let’s see this in use.
my_derivs_demo5 <- derivs_demo5()
C_my_derivs_demo5 <- compileNimble(my_derivs_demo5)
d <- 1.2
x <- c(2.1, 2.2)
C_my_derivs_demo5$derivsJacobian(d, x, wrt = 1:3, order = 0:2)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] -0.1689652 -0.1569948
Field "jacobian":
[,1] [,2] [,3]
[1,] 0.3548269 0.1222986 0.0000000
[2,] 0.3453885 0.0000000 0.1170325
Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] -0.74513642 -0.08786189 0
[2,] -0.08786189 -0.05020679 0
[3,] 0.00000000 0.00000000 0
##
, , 2
##
[,1] [,2] [,3]
[1,] -0.7598548 0 -0.10047667
[2,] 0.0000000 0 0.00000000
[3,] -0.1004767 0 -0.05480546

We can compare these results to those shown above from the same values of d and x. The value
here is the same as jacobian[1:2, 1] above. The jacobian here is the same as t(hessian[1,
1:3, 1:2]) or (by symmetry of second derivatives) t(hessian[1:3, 1, 1:2]) above. And the
hessian[i,j,k] here contains the third derivative of the k-th output of run(d, x) with respect
to d, the i-th input, and the j-th input.

It is also possible to call derivs on (i.e. tape) a function containing a derivs call from which some
0-th and/or 2nd order derivatives are extracted. It is even possible to triple tape by calling derivs
on a function calling derivs on a function calling derivs, and so on.

16.7 Derivatives involving model calculations
Obtaining derivatives involving model calculations takes some special considerations, and there are
two ways to do it.

We will use the Poisson GLMM above as an example model for which we want derivatives. We can

226 CHAPTER 16. AUTOMATIC DERIVATIVES

obtain derivatives with respect to any variables for all or any subset of model calculations.

16.7.1 Method 1: nimDerivs of model$calculate

Recall that model$calculate(nodes) returns the sum of the log probabilities of all stochastic nodes
in nodes. Deterministic calculations are also executed; they contribute 0 to the sum of probabilities
but may be needed for inputs to subsequent calculations. Calculations are done in the order of
nodes, which should be a valid order for the model, often obtained from model$getDependencies.

The simplest way to get derivatives for model calculations is to use model$calculate as the function
taped by derivs (here shown by its alternative name nimDerivs for illustration).
derivs_nf <- nimbleFunction(

setup = function(model, with_respect_to_nodes, calc_nodes) {},
run = function(order = integer(1),

reset = logical(0, default=FALSE)) {
ans <- nimDerivs(model$calculate(calc_nodes), wrt = with_respect_to_nodes,

order = order, reset = reset)
return(ans)
returnType(ADNimbleList())

}
)

In derivs_nf:

• The mere presence of model, with_respect_to_nodes, and calc_nodes as setup arguments
makes them available as member data for run or other methods.

• model will be a model object returned from nimbleModel.
• with_respect_to_nodes will be the names of nodes we want derivatives with respect to.
• calc_nodes will be the nodes to be calculated, in the order given.
• order can contain any of 0 (value), 1 (1st order), or 2 (2nd order) derivatives requested, as

above.
• reset should be TRUE if the AD tape should be reset (re-recorded), as above. There are

additional situations when a tape for model$calculate should be reset, discussed below.

Thus, nimDerivs(model$calculate(calc_nodes), wrt = with_respect_to_nodes, <other
args>) takes derivatives of a function whose inputs are the values of with_respect_to_nodes
(using their values in the model object) and whose output is the summed log probability returned
by model$calculate(calc_nodes). The internal handling of this case is distinct from other calls
to nimDerivs.

Now we can make an instance of derivs_nf, compile the model and nimbleFunction instance, and
look at the results. We will assume the model was built as above in the Laplace example.
wrt_nodes <- c('intercept','beta', 'sigma')
calc_nodes <- model$getDependencies(wrt_nodes)
derivs_all <- derivs_nf(model, wrt_nodes, calc_nodes)
cModel <- compileNimble(model)
cDerivs_all <- compileNimble(derivs_all, project = model)
derivs_result <- cDerivs_all$run(order = 0:2)
derivs_result

16.7. DERIVATIVES INVOLVING MODEL CALCULATIONS 227

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] -78.44085
Field "jacobian":
[,1] [,2] [,3]
[1,] -9.358104 -0.3637619 -5.81414
Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] -62.35820 -16.21705 0.00000
[2,] -16.21705 -69.47074 0.00000
[3,] 0.00000 0.00000 -45.11516

As above, using order = 0:2 results in the the value (0th order), Jacobian (1st order), and Hessian
(2nd order). The function model$calculate is organized here to have inputs that are the current
values of intercept, beta, and sigma in the model. It has output that is the summed log prob-
ability of the calc_nodes. The Jacobian columns are first derivatives with respect to intercept,
beta and sigma, respectively. The first and second indices of the Hessian array follow the same
ordering. For example derivs_result$hessian[2,1,1] is the second derivative with respect to
beta (first index = 2) and intercept (second index = 1).

In the case of model$calculate, the first index of the Jacobian and the last index of the Hessian
are always 1 because derivatives are of the first (and only) output value.

The ordering of inputs is similar to that used above, such as for the arguments d and x, but in this
case the inputs are model nodes. When non-scalar nodes such as matrix or array nodes are used as
with_respect_to_nodes, the resulting elements of Jacobian columns and Hessian first and second
indices will follow column-major order. For example, for a 2x2 matrix m, the element order would
be m[1, 1], m[2, 1], m[1, 2], m[2, 2]. This will usually be the same ordering as the names
returned by model$expandNodeNames("m", returnScalarElements=TRUE).

The actual values used as inputs are the current values in the compiled model object. These would
typically be set by code like values(model, with_respect_to_nodes) <<- my_values before the
call to nimDerivs in the above example.

As above, derivatives can also be calculated in uncompiled execution, but they will be much slower
and less accurate. Uncompiled execution is mostly useful for checking that compiled derivatives
are working correctly. This will use values in the uncompiled model object.
derivs_all$run(order = 0:2)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] -78.44085
Field "jacobian":
[,1] [,2] [,3]
[1,] -9.358104 -0.3637619 -5.81414
Field "hessian":
, , 1
##

228 CHAPTER 16. AUTOMATIC DERIVATIVES

[,1] [,2] [,3]
[1,] -62.35821 -1.621705e+01 0.000000e+00
[2,] -16.21705 -6.947075e+01 2.384186e-07
[3,] 0.00000 2.384186e-07 -4.511517e+01

We can see that all the results clearly match the compiled results to a reasonable numerical precision.

16.7.2 Method 2: nimDerivs of a method that calls model$calculate

Sometimes one needs derivatives of calculations done in a nimbleFunction as well as in a model.
And sometimes one needs to change values in a model before and/or after doing model calculations
and have those changes recorded in the derivative tape.

For these reasons, it is possible to take derivatives of a method that includes a call to
model$calculate. Continuing the above example, say we want to take derivatives with respect
to the log of sigma, so the input vector will be treated as intercept, beta, and log(sigma), in
that order. We will convert log(sigma) to sigma before using it in the model, and we want the
derivative of that transformation included in the tape (i.e. using the chain rule).

(Using log(sigma) instead of sigma is useful so an algorithm such as optimization or HMC can
use an unconstrained parameter space. A constraint such as sigma > 0 can be difficult for many
algorithms. See below for NIMBLE’s automated parameter transformation system if you need to
do this systematically.)

Here is a nimbleFunction to do that.
derivs_nf2 <- nimbleFunction(

setup = function(model, wrt_nodes, calc_nodes) {
derivsInfo <- makeModelDerivsInfo(model, wrt_nodes, calc_nodes)
updateNodes <- derivsInfo$updateNodes
constantNodes <- derivsInfo$constantNodes
n_wrt <- length(wrt_nodes)
If wrt_nodes might contain non-scalar nodes, the more general way
to determine the length of all scalar elements is:
length(model$expandNodeNames(wrt_nodes, returnScalarComponents = TRUE))

},
run = function(x = double(1)) {
x_trans <- x # x[1:2] don't need transformation
x_trans[3] <- exp(x[3]) # transformation of x[3]
values(model, wrt_nodes) <<- x_trans # put inputs into model
ans <- model$calculate(calc_nodes) # calculate model
return(ans)
returnType(double(0))

},
methods = list(
derivsRun = function(x = double(1),

order = integer(1),
reset = logical(0, default=FALSE)) {

wrt <- 1:n_wrt
ans <- nimDerivs(run(x), wrt = wrt, order = order, reset = reset,

16.7. DERIVATIVES INVOLVING MODEL CALCULATIONS 229

model = model, updateNodes = updateNodes,
constantNodes = constantNodes)

return(ans)
returnType(ADNimbleList())

}
),
buildDerivs = list(run = list()) # or simply 'run' would work in this case

)

Let’s see how this can be used.
derivs_all2 <- derivs_nf2(model, wrt_nodes, calc_nodes)
cDerivs_all2 <- compileNimble(derivs_all2, project = model)
params <- values(model, wrt_nodes)
params[3] <- log(params[3])
cDerivs_all2$derivsRun(params, order = 0:2)

nimbleList object of type NIMBLE_ADCLASS
Field "value":
[1] -78.44085
Field "jacobian":
[,1] [,2] [,3]
[1,] -9.358104 -0.3637619 -2.90707
Field "hessian":
, , 1
##
[,1] [,2] [,3]
[1,] -62.35820 -16.21705 0.00000
[2,] -16.21705 -69.47074 0.00000
[3,] 0.00000 0.00000 -14.18586

Notice that these results are the same as we saw above except for third elements, which represent
derivatives with respect to sigma above and to log(sigma) here.

There are several important new points here:

• The only valid way to get values into the model that will be recorded on the AD tape is
with values(model, nodes) <<- some_values as shown. Other ways such as nimCopy or
model[[node]] <<- some_value are not currently supported to work with AD.

• The call to nimDerivs of run must be told some information about the model calculations
that will be done inside of run. model is of course the model that will be used. constantNodes
is a vector of node names whose values are needed for the calculations but are not expected
to change until you use reset = TRUE. Values of these nodes will be baked into the AD tape
until reset = TRUE. updateNodes is a vector of node names whose values are needed for
the calculations, might change between calls even with reset = FALSE, and are neither part
of wrt_nodes nor a deterministic part of calc_nodes. The function makeModelDerivsInfo,
as shown in the setup code, determines what is usually needed for constantNodes and
updateNodes.

• In Method 1 above, the NIMBLE compiler automatically determines constantNodes and

230 CHAPTER 16. AUTOMATIC DERIVATIVES

updateNodes using makeModelDerivsInfo based on the inputs to nimDerivs(model$calculate(...),...).

• One can use double-taping, but if so both calls to nimDerivs need the model, updateNodes,
and constantNodes arguments, which should normally be identical.

16.7.2.1 Advanced topic: more about constantNodes and updateNodes

In most cases, you can obtain constantNodes and updateNodes from makeModelDerivsInfo with-
out knowing exactly what they mean. But for advanced uses and possible debugging needs, let’s
explore these arguments in more detail. The purpose of constantNodes and updateNodes is to
tell the AD system about all nodes that will be needed for taped model calculations. Specifically:

• updateNodes and constantNodes are vectors of nodes names that together comprise any
nodes that are necessary for model$calculate(calc_nodes) but are:

– not in the wrt argument to nimDerivs (only relevant for Method 1), and
– not assigned into the model using values(model, nodes) <<- some_values prior to

model$calculate (only relevant for Method 2), and
– not a deterministic node in calc_nodes.

• updateNodes includes node names satisfying those conditions whose values might change
between uses of the tape regardless of the reset argument.

• constantNodes includes node names satisfying those conditions whose values will be baked
into the tape (will not change) until the next call with reset=TRUE.

To fix ideas, say that we want derivatives with respect to ran_eff[1] for calculations of it and the
data that depend on it, including any deterministic nodes. In other words, wrt will be ran_eff[1],
and calc_nodes will be:
model$getDependencies('ran_eff[1]')

[1] "ran_eff[1]"
[2] "lifted_exp_oPintercept_plus_beta_times_X_oBi_comma_j_cB_plus_ran_eff_oBi_cB_cP_L7[1, 1]"
[3] "lifted_exp_oPintercept_plus_beta_times_X_oBi_comma_j_cB_plus_ran_eff_oBi_cB_cP_L7[1, 2]"
[4] "lifted_exp_oPintercept_plus_beta_times_X_oBi_comma_j_cB_plus_ran_eff_oBi_cB_cP_L7[1, 3]"
[5] "lifted_exp_oPintercept_plus_beta_times_X_oBi_comma_j_cB_plus_ran_eff_oBi_cB_cP_L7[1, 4]"
[6] "lifted_exp_oPintercept_plus_beta_times_X_oBi_comma_j_cB_plus_ran_eff_oBi_cB_cP_L7[1, 5]"
[7] "y[1, 1]"
[8] "y[1, 2]"
[9] "y[1, 3]"
[10] "y[1, 4]"
[11] "y[1, 5]"

(The “lifted” nodes here are for the exp(intercept + beta*X[i,j] + ran_eff[i]), i.e. the inputs
to dpois. See chapters 2 and 13 to learn about lifted nodes.)

In this case, the log probability of ran_eff[1] itself requires sigma. Since sigma is not in
wrt_nodes, it is not assigned into the model by the line values(model, wrt_nodes) <<- x_trans.
It is also not a deterministic node (or any node) in calc_nodes, so it must be included in
updateNodes or constantNodes. Since it might change between calls, it should be included in
updateNodes.

16.8. PARAMETER TRANSFORMATIONS 231

Next, notice that the stochastic node y[1, 1] in calc_nodes means that the log probability of
y[1, 1] will be calculated, and this requires the actual value of y[1, 1]. This node is part of
calc_nodes but is not a deterministic part of it, so it must be provided in either updateNodes
or constantNodes. When data values will not be changed often, it is better to put those nodes
in constantNodes, because that will be more efficient than putting them in updateNodes. (If the
data values are changed, use reset=TRUE, which will reset values of all constantNodes in the tape.)

The function makeModelDerivsInfo inspects the model and determines the usual needs for
updateNodes and constantNodes. By default, data nodes are put in constantNodes. Use
dataAsConstantNodes = FALSE in makeModelDerivsInfo if you want them put in updateNodes.

Note that a deterministic node in calc_nodes will have its value calculated as part of the operations
recorded in the AD tape, so it does not need to be included in updateNodes or constantNodes.

As usual in model-generic programming in NIMBLE, be aware of lifted nodes and their implications.
Suppose in the Poisson GLMM we had used a precision parameterization for the random effects,
with the changes in this code snippet:

precision ~ dgamma(0.01, 0.01)
<other lines>
ran_eff[i] ~ dnorm(0, tau = precision)

This would result in a lifted node for the standard deviation, calculated as 1/sqrt(precision).
That lifted node is what would actually be used in dnorm for each ran_eff[i]. Now if ran_eff[1]
is in wrt_nodes, the lifted node (but not precision) will be in updateNodes (as determined by
makeModelDerivsInfo). If you then change the value of precision, you must be sure to calculate
the lifted node before obtaining derivatives. Otherwise the value of the lifted node will correspond
to the old value of precision. These considerations are not unique to AD but rather are part of
model-generic programming (see chapter 15).

An example of model-generic programming to update any lifted nodes that depend on precision
would be:
model$calculate(model$getDependencies('precision', determOnly=TRUE))

In Method 1 above, NIMBLE automatically uses makeModelDerivsInfo based on the
code nimDerivs(model$calculate(<args>), <args>). However, in Method 2, when
model$calculate(<args>) is used in a method such as run, then a call to nimDerivs(run(<args>),
<args>) requires the model, updateNodes and constantNodes to be provided. Hence, the two
functions (run and derivsRun) must be written in coordination.

16.7.2.2 When do you need to reset a tape with model calculations?

The additional rule for when tapes need to be reset based on model calculations is:

• when values of any constantNodes are changed. Usually these will only be data nodes.

16.8 Parameter transformations
Many algorithms that in some way explore a parameter space are best used in an unconstrained
parameter space. For example, there are a bunch of optimization methods provided in R’s optim,

232 CHAPTER 16. AUTOMATIC DERIVATIVES

but only one (L-BFGS-B) allows constraints on the parameter space. Similarly, HMC is implemented
to work in an unconstrained parameter space.

NIMBLE provides a nimbleFunction to automatically create a transformation from original param-
eters to unconstrained parameters and the inverse transformation back to the original parameters.
Denoting x as an original parameter and g(x) as the transformed parameter, the cases handled
include:

• If scalar 𝑥 ∈ (0, ∞), then 𝑔(𝑥) = log(𝑥). For example, x ~ dweibull in a model means
𝑥 ∈ (0, ∞).

• If scalar 𝑥 ∈ (0, 1), then 𝑔(𝑥) = logit(𝑥). For example, x ~ dbeta in a model means 𝑥 ∈ (0, 1)
• If scalar 𝑥 ∈ (𝑎, ∞), then 𝑔(𝑥) = log(𝑥 − 𝑎).
• If scalar 𝑥 ∈ (−∞, 𝑏), then 𝑔(𝑥) = − log(𝑏 − 𝑥).
• If scalar 𝑥 ∈ (𝑎, 𝑏), then 𝑔(𝑥) = logit((𝑥 − 𝑎)/(𝑏 − 𝑎)). For example x ~ dunif(a, b) in a

model means 𝑥 ∈ (𝑎, 𝑏).
• If matrix x[1:n, 1:n] ~ dwishart or x[1:n, 1:n] ~ dinvwishart in a model, then 𝑔(𝑥) =

chol(𝑥) for non-diagonal elements of chol(𝑥) and 𝑔(𝑥) = log(chol(𝑥)) for diagonal elements of
chol(𝑥), where chol(𝑥) is the Cholesky decomposition of 𝑥. Note that 𝑥 in these cases follows
a Wishart or inverse Wishart distribution, respectively, and thus is a random precision or
covariance matrix. That means it must be positive definite and thus have positive diagonal
elements of chol(𝑥).

• If vector x[1:n] ~ ddirch in a model, then 𝑔(𝑥[1]) = logit(𝑥[1]) and 𝑔(𝑥[𝑖]) = logit(𝑥[𝑖]/(1−
∑𝑖−1

𝑘=1 𝑥[𝑖])) for 𝑖 > 1. In this case, x follows a Dirichlet distribution and thus has the simplex
constraint that ∑𝑛

𝑖=1 𝑥[𝑖] = 1.
• If vector x[1:n] ~ dlkj_corr_cholesky, 𝑔(𝑥) is the LKJ Cholesky transformation. This

provides the LKJ prior for a covariance matrix.

Note that the scalar transformations are all monotonic increasing functions of the original param-
eter.

The worked example next will illustrate use of the parameter transformation system.

Chapter 17

Example: maximum likelihood
estimation using optim with gradients
from nimDerivs.

In this example, we will obtain maximum likelihood estimates of a Poisson GLM. It will be similar
to the GLMM above, but without the random effects. Maximization of a likelihood function can
be done with methods that don’t require gradients, but it is much faster to use methods that do
use gradients.

To illustrate the parameter transformation system, we will give p a uniform prior, constrained to
values between 0 and 1. The maximum likelihood estimation below will not use the prior probability,
but nevertheless the prior will be interpreted for its constraints on valid values in this case. This
need for parameter transformation is somewhat artifical in the interest of simplicity.
model_code <- nimbleCode({

priors (will be ignored for MLE)
p ~ dunif(0, 1)
log_p <- log(p)
beta ~ dnorm(0, sd = 100)
random effects and data
for(i in 1:50) {
data
y[i] ~ dpois(exp(log_p + beta*X[i]))

}
})

set.seed(123)
X <- rnorm(50) # Simulate values for X

model <- nimbleModel(model_code, constants = list(X = X), calculate = FALSE,
buildDerivs = TRUE) # Create nimble model object

As in the first example above, we will simulate data using the model itself. One can instead provide
data as an argument to nimbleModel.

233

234CHAPTER 17. EXAMPLE: MAXIMUM LIKELIHOOD ESTIMATION USING OPTIM WITH GRADIENTS FROM NIMDERIVS.

model$p <- 0.5 # Assign parameter values and simulate data (y).
model$beta <- 0.2
model$calculate() # We expect this to be NA because there are no y values yet.

[1] NA
model$simulate(model$getDependencies(c('beta', 'p'), self = FALSE)) # Simulate y values.
model$calculate() # Now we expect a valid result.

[1] -53.33015
model$setData('y') # Now the model has y marked as data, with values from simulation.
Cmodel <- compileNimble(model) # Make compiled version.

Now that the example model is set up, we’ll write a nimbleFunction to provide the negative log
likelihood and its gradient using an unconstrained parameter space. The default behavior of optim
below is to do a minimization problem, so returning the negative log likelihood means that optim
will find the maximum likelihood parameters.
logLikelihood_nf <- nimbleFunction(

setup = function(model, paramNodes) {
Determine nodes for calculating the log likelihood for parameters given by
paramNodes, ignoring any priors.
calcNodes <- model$getDependencies(paramNodes, self = FALSE)
Set up the additional arguments for nimDerivs involving model$calculate
derivsInfo <- makeModelDerivsInfo(model, paramNodes, calcNodes)
updateNodes <- derivsInfo$updateNodes
constantNodes <- derivsInfo$constantNodes
Create a parameter transformation between original and unconstrained
parameter spaces.
transformer <- parameterTransform(model, paramNodes)

},
methods = list(
neg_logLikelihood_p = function(p = double(1)) {

Put values in model and calculate negative log likelihood.
values(model, paramNodes) <<- p
return(-model$calculate(calcNodes))
returnType(double())

},
neg_logLikelihood = function(ptrans = double(1)) {

Objective function for optim,
using transformed parameter space.
p <- transformer$inverseTransform(ptrans)
return(neg_logLikelihood_p(p))
returnType(double())

},
gr_neg_logLikelihood = function(ptrans = double(1)) {

Gradient of neg log likelihood
p <- transformer$inverseTransform(ptrans)

235

d <- derivs(neg_logLikelihood_p(p), wrt = 1:length(p), order = 1,
model = model, updateNodes = updateNodes,
constantNodes = constantNodes)

return(d$jacobian[1,])
returnType(double(1))

},
transform = function(p = double(1)) {

Give user access to the transformation ...
return(transformer$transform(p))
returnType(double(1))

},
inverse = function(ptrans = double(1)) { # ... and its inverse.

return(transformer$inverseTransform(ptrans))
returnType(double(1))

}
),
buildDerivs = 'neg_logLikelihood_p'

)

Sometimes you might want a call to transformer$transform or transformer$inverseTransform
to be included in a derivative calculation. In this case, we don’t.

Next we build and compile an instance of logLikelihood_nf specialized (by the ‘setup“ function)
to our model and its parameters.
ll_glm <- logLikelihood_nf(model, c("p", "beta"))
Cll_glm <- compileNimble(ll_glm, project = model)

Now let’s see how the parameter transformation works for this model. For beta, it already has an
unconstrained range of valid values, so it has no transformation (i.e. it has an indentity transfor-
mation). For p, it is constrained beween 0 and 1, so it will be logit-transformed.
Cll_glm$transform(c(0.2, 1))

[1] -1.386294 1.000000
The inverse transformation goes back to the original parameters, within rounding:
Cll_glm$inverse(c(-1.386294, 1))

[1] 0.2000001 1.0000000

Now we are ready to use the methods provided in Cll_glm in a call to R’s optim to find the MLE.
MLE <- optim(c(0,0), # initial values

fn = Cll_glm$neg_logLikelihood, # function to be minimized
gr = Cll_glm$gr_neg_logLikelihood, # gradient of function to be minimized
method = "BFGS") # optimization method to use

MLE$par

[1] 0.08257249 0.25577134

236CHAPTER 17. EXAMPLE: MAXIMUM LIKELIHOOD ESTIMATION USING OPTIM WITH GRADIENTS FROM NIMDERIVS.

-MLE$value

[1] -47.73243

Those outputs show the MLE in the parameters logit(p), and beta, following by the maximum
log likelihood value.

Now let’s confirm that it’s working correctly by comparing to results from glm.
glm_fit <- glm(I(model$y) ~ X, family = poisson)
coef(glm_fit)

(Intercept) X
-0.6527680 0.2557751
logLik(glm_fit)

'log Lik.' -47.73243 (df=2)

We see that the coefficient for X matches beta (within numerical tolerance), and the maximum
log likelihoods match. To understand the intercept, we need to be careful about the parameter
transformation used in nimble. The inverse transformation will give p, and the log of that should
match the intercept estimated by glm.
Cll_glm$inverse(MLE$par)

[1] 0.5206314 0.2557713
log(Cll_glm$inverse(MLE$par)[1]) # This should match glm's intercept

[1] -0.652713

It looks like it worked.

Bibliography

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269––342.

Ariyo, O., Quintero, A., Muñoz, J., Verbeke, G., and Lesaffre, E. (2020). Bayesian model selection
in linear mixed models for longitudinal data. Journal of Applied Statistics, 47(5):890–913.

Banerjee, S., Carlin, B., and Gelfand, A. (2015). Hierarchical Modeling and Analysis for Spatial
Data. Chapman & Hall, Boca Raton, 2 edition.

Bell, B. (2022). CppAD: A Package for Differentiation of C++ Algorithms.

Blackwell, D. and MacQueen, J. (1973). Ferguson distributions via Pólya urn schemes. The Annals
of Statistics, 1:353–355.

Borchers, H. W. (2022). pracma: Practical Numerical Math Functions. R package version 2.3.8.

Caffo, B. S., Jank, W., and Jones, G. L. (2005). Ascent-Based Monte Carlo Expectation-
Maximization. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
67(2):235–251.

Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the
American Statistical Association, 89:268–277.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90:577–588.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics,
1:209–230.

Ferguson, T. S. (1974). Prior distribution on the spaces of probability measures. Annals of Statistics,
2:615–629.

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen,
A., and Sibert, J. (2012). AD Model Builder: using automatic differentiation for statistical
inference of highly parameterized complex nonlinear models. Optimization Methods and Software,
27(2):233–249.

Gelfand, A. E. and Kottas, A. (2002). A computational approach for full nonparametric bayesian
inference under dirichlet process mixture models. Journal of Computational and Graphical Statis-
tics, 11(2):289–305.

Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian model. Statistics and Computing, 24(6):997–1016.

237

238 BIBLIOGRAPHY

George, E., Makov, U., and Smith, A. (1993). Conjugate likelihood distributions. Scandinavian
Journal of Statistics, 20(2):147––156.

Gilbert, P. and Varadhan, R. (2019). numDeriv: Accurate Numerical Derivatives. R package
version 2016.8-1.1.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, Second Edition. Society for Industrial and Applied Mathematic, Philadel-
phia, PA, second edition edition.

Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623.

Hug, J. E. and Paciorek, C. J. (2021). A numerically stable online implementation and exploration
of WAIC through variations of the predictive density, using NIMBLE. Technical report, arXiv
preprint.

Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015). Inference for dynamic
and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National
Academy of Sciences, 112(3):719–724.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal
of the American Statistical Association, 96(453):161–173.

Ishwaran, H. and James, L. F. (2002). Approximate Dirichlet process computing in finite normal
mixtures: smoothing and prior information. Journal of Computational and Graphical Statistics,
11:508–532.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016). TMB: Automatic
differentiation and Laplace approximation. Journal of Statistical Software, 70(5):1–21.

Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Generating random correlation matrices
based on vines and extended onion method. Journal of multivariate analysis, 100(9):1989–2001.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates I: Density estimates. The Annals
of Statistics, 12:351–357.

Louis, T. A. (1982). Finding the Observed Information Matrix when Using the EM Algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 44(2):226–233.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution,
critique and future directions. Statistics in Medicine, 28(25):3049––3067.

Michaud, N., de Valpine, P., Turek, D., Paciorek, C. J., and Nguyen, D. (2021). Sequential monte
carlo methods in the nimble and nimblesmc r packages. Journal of Statistical Software, 100(3):1–
39.

Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9:249–265.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3):705–741.

BIBLIOGRAPHY 239

Neal, R. M. (2011). MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain
Monte Carlo, Chapman & Hall/CRC Handbooks of Modern Statistical Methods. Chapman and
Hall/CRC.

Paciorek, C. (2009). Understanding intrinsic Gaussian Markov random field spatial models, in-
cluding intrinsic conditional autoregressive models. Technical report, University of California,
Berkeley.

Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure, blocking and
parameterization for the Gibbs sampler. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 59(2):291–317.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman
& Hall, Boca Raton.

Sethuraman, J. (1994). A constructive definition of Dirichlet prior. Statistica Sinica, 2:639–650.

Skaug, H. J. and Fournier, D. A. (2006). Automatic approximation of the marginal likelihood in
non-Gaussian hierarchical models. Computational Statistics & Data Analysis, 51(2):699–709.

Stan Development Team (2021a). Stan language functions reference manual. Technical report.

Stan Development Team (2021b). Stan language reference manual. Technical report.

Stan Development Team (2023). Stan modeling language users guide and reference manual, version
2.32.2.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-
one-out cross-validation and waic. Statistics and Computing, 27(5):1413–1432.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applica-
ble information criterion in singular learning theory. Journal of Machine Learning Research,
11(Dec):3571–3594.

	I Introduction
	Welcome to NIMBLE
	What does NIMBLE do?
	How to use this manual

	Lightning introduction
	A brief example
	Creating a model
	Compiling the model
	One-line invocation of MCMC
	Creating, compiling and running a basic MCMC configuration
	Customizing the MCMC
	Running MCEM
	Creating your own functions

	More introduction
	NIMBLE adopts and extends the BUGS language for specifying models
	nimbleFunctions for writing algorithms
	The NIMBLE algorithm library

	Installing NIMBLE
	Requirements to run NIMBLE
	Installing a C++ compiler for NIMBLE to use
	MacOS
	Linux
	Windows

	Installing the NIMBLE package
	Troubleshooting installation problems
	Customizing your installation
	Using your own copy of Eigen
	Using libnimble
	BLAS and LAPACK
	Customizing compilation of the NIMBLE-generated C++

	II Models in NIMBLE
	Writing models in NIMBLE's dialect of BUGS
	Comparison to BUGS dialects supported by WinBUGS, OpenBUGS and JAGS
	Supported features of BUGS and JAGS
	NIMBLE's Extensions to BUGS and JAGS
	Not-supported features of BUGS and JAGS

	Writing models
	Declaring stochastic and deterministic nodes
	More kinds of BUGS declarations
	Vectorized versus scalar declarations
	Available distributions
	Available BUGS language functions
	Available link functions
	Truncation, censoring, and constraints

	Building and using models
	Creating model objects
	Using nimbleModel to create a model
	Creating a model from standard BUGS and JAGS input files
	Making multiple instances from the same model definition

	NIMBLE models are objects you can query and manipulate
	What are variables and nodes?
	Determining the nodes and variables in a model
	Accessing nodes
	How nodes are named
	Why use node names?
	Checking if a node holds data

	Using models in parallel

	III Algorithms in NIMBLE
	MCMC
	One-line invocation of MCMC: nimbleMCMC
	The MCMC configuration
	Default MCMC configuration
	Customizing the MCMC configuration

	Building and compiling the MCMC
	Initializing MCMC
	User-friendly execution of MCMC algorithms: runMCMC
	Running the MCMC
	Rerunning versus restarting an MCMC
	Measuring sampler computation times: getTimes
	Assessing the adaption process of RW and RW_block samplers

	Extracting MCMC samples
	Calculating WAIC
	k-fold cross-validation
	Variable selection using Reversible Jump MCMC
	Using indicator variables
	Without indicator variables

	Samplers provided with NIMBLE
	Conjugate (`Gibbs') samplers
	Hamiltonian Monte Carlo (HMC)
	Particle filter samplers
	Customized log-likelihood evaluations: RW_llFunction sampler

	Detailed MCMC example: litters
	Comparing different MCMCs with MCMCsuite and compareMCMCs
	Running MCMC chains in parallel

	Particle Filters, PMCMC, MCEM, Laplace approximation and quadrature
	Particle filters / sequential Monte Carlo and iterated filtering
	Filtering algorithms
	Particle MCMC (PMCMC)

	Monte Carlo Expectation Maximization (MCEM)
	Estimating the asymptotic covariance From MCEM

	Laplace approximation and adaptive Gauss-Hermite quadrature

	Spatial models
	Intrinsic Gaussian CAR model: dcar_normal
	Specification and density
	Example

	Proper Gaussian CAR model: dcar_proper
	Specification and density
	Example

	MCMC Sampling of CAR models
	Initial values
	Zero-neighbor regions
	Zero-mean constraint

	Bayesian nonparametric models
	Bayesian nonparametric mixture models
	Chinese Restaurant Process model
	Specification and density
	Example
	Extensions

	Stick-breaking model
	Specification and function
	Example

	MCMC sampling of BNP models
	Sampling CRP models
	Sampling stick-breaking models

	IV Programming with NIMBLE
	Overview
	Writing simple nimbleFunctions
	Introduction to simple nimbleFunctions
	R functions (or variants) implemented in NIMBLE
	Finding help for NIMBLE's versions of R functions
	Basic operations
	Math and linear algebra
	Distribution functions
	Flow control: if-then-else, for, while, and stop
	print and cat
	Checking for user interrupts: checkInterrupt
	Optimization: optim and nimOptim
	Integration: integrate and nimIntegrate
	`nim' synonyms for some functions

	How NIMBLE handles types of variables
	nimbleList data structures
	How numeric types work

	Declaring argument and return types
	Compiled nimbleFunctions pass arguments by reference
	Calling external compiled code
	Calling uncompiled R functions from compiled nimbleFunctions

	Creating user-defined distributions and functions for models
	User-defined functions
	User-defined distributions
	Using registerDistributions for alternative parameterizations and providing other information

	Advanced user-defined functions and distributions

	Working with NIMBLE models
	The variables and nodes in a NIMBLE model
	Determining the nodes in a model
	Understanding lifted nodes
	Determining dependencies in a model

	Accessing information about nodes and variables
	Getting distributional information about a node
	Getting information about a distribution
	Getting distribution parameter values for a node
	Getting distribution bounds for a node

	Carrying out model calculations
	Core model operations: calculation and simulation
	Pre-defined nimbleFunctions for operating on model nodes: simNodes, calcNodes, and getLogProbNodes
	Accessing log probabilities via logProb variables

	Data structures in NIMBLE
	The modelValues data structure
	Creating modelValues objects
	Accessing contents of modelValues

	The nimbleList data structure
	Pre-defined nimbleList types
	Using eigen and svd in nimbleFunctions

	Writing nimbleFunctions to interact with models
	Overview
	Using and compiling nimbleFunctions
	Writing setup code
	Useful tools for setup functions
	Accessing and modifying numeric values from setup
	Determining numeric types in nimbleFunctions
	Control of setup outputs

	Writing run code
	Driving models: calculate, calculateDiff, simulate, getLogProb
	Getting and setting variable and node values
	Getting parameter values and node bounds
	Using modelValues objects
	Using model variables and modelValues in expressions
	Including other methods in a nimbleFunction
	Using other nimbleFunctions
	Virtual nimbleFunctions and nimbleFunctionLists
	Character objects
	User-defined data structures

	Example: writing user-defined samplers to extend NIMBLE's MCMC engine
	User-defined samplers and posterior predictive nodes

	Copying nimbleFunctions (and NIMBLE models)
	Debugging nimbleFunctions
	Timing nimbleFunctions with run.time
	Clearing and unloading compiled objects
	Reducing memory usage

	V Automatic Derivatives in NIMBLE
	Automatic Derivatives
	How to turn on derivatives in a model
	Finish setting up the GLMM example

	How to use Laplace approximation and adaptive Gauss-Hermite quadrature
	How to support derivatives in user-defined functions and distributions
	What operations are and aren't supported for AD
	Basics of obtaining derivatives in nimbleFunctions
	Checking derivatives with uncompiled execution
	Holding some local variables out of derivative tracking
	Using AD with multiple nimbleFunctions
	Understanding more about how AD works: taping of operations
	Resetting a nimDerivs call
	A note on performance benchmarking

	Advanced uses: double taping
	Derivatives involving model calculations
	Method 1: nimDerivs of model$calculate
	Method 2: nimDerivs of a method that calls model$calculate

	Parameter transformations

	Example: maximum likelihood estimation using optim with gradients from nimDerivs.

