Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. “Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269--342.
Ariyo, Oludare, Adrian Quintero, Johanna Muñoz, Geert Verbeke, and Emmanuel Lesaffre. 2020. “Bayesian Model Selection in Linear Mixed Models for Longitudinal Data.” Journal of Applied Statistics 47 (5): 890–913.
Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2015. Hierarchical Modeling and Analysis for Spatial Data. 2nd ed. Boca Raton: Chapman & Hall.
Bell, B. 2022. CppAD: A Package for Differentiation of C++ Algorithms.”
Blackwell, D, and J MacQueen. 1973. “Ferguson Distributions via Pólya Urn Schemes.” The Annals of Statistics 1: 353–55.
Borchers, Hans W. 2022. Pracma: Practical Numerical Math Functions.
Caffo, Brian S., Wolfgang Jank, and Galin L. Jones. 2005. “Ascent-Based Monte Carlo Expectation-Maximization.” Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67 (2): 235–51.
Escobar, M D. 1994. Estimating normal means with a Dirichlet process prior.” Journal of the American Statistical Association 89: 268–77.
Escobar, M D, and M West. 1995. Bayesian density estimation and inference using mixtures.” Journal of the American Statistical Association 90: 577–88.
Ferguson, T S. 1973. “A Bayesian Analysis of Some Nonparametric Problems.” Annals of Statistics 1: 209–30.
———. 1974. “Prior Distribution on the Spaces of Probability Measures.” Annals of Statistics 2: 615–29.
Fournier, David A., Hans J. Skaug, Johnoel Ancheta, James Ianelli, Arni Magnusson, Mark N. Maunder, Anders Nielsen, and John Sibert. 2012. AD Model Builder: Using Automatic Differentiation for Statistical Inference of Highly Parameterized Complex Nonlinear Models.” Optimization Methods and Software 27 (2): 233–49.
Gelfand, Alan E, and Athanasios Kottas. 2002. “A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models.” Journal of Computational and Graphical Statistics 11 (2): 289–305.
Gelman, A., J. Hwang, and A. Vehtari. 2014. “Understanding Predictive Information Criteria for Bayesian Model.” Statistics and Computing 24 (6): 997–1016.
George, E. I., U. E. Makov, and A. F. M. Smith. 1993. “Conjugate Likelihood Distributions.” Scandinavian Journal of Statistics 20 (2): 147--156.
Gilbert, Paul, and Ravi Varadhan. 2019. numDeriv: Accurate Numerical Derivatives.
Green, Peter J. 1995. “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.” Biometrika 82 (4): 711–32.
Griewank, Andreas, and Andrea Walther. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. Second edition. Philadelphia, PA: Society for Industrial; Applied Mathematic.
Hoffman, Matthew D, and Andrew Gelman. 2014. “The No-u-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” J. Mach. Learn. Res. 15 (1): 1593–623.
Hug, Joshua E., and Christopher J. Paciorek. 2021. “A Numerically Stable Online Implementation and Exploration of WAIC Through Variations of the Predictive Density, Using NIMBLE.” arXiv preprint.
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King. 2015. “Inference for Dynamic and Latent Variable Models via Iterated, Perturbed Bayes Maps.” Proceedings of the National Academy of Sciences 112 (3): 719–24.
Ishwaran, Hemant, and Lancelot F James. 2001. “Gibbs Sampling Methods for Stick-Breaking Priors.” Journal of the American Statistical Association 96 (453): 161–73.
Ishwaran, H, and L F James. 2002. “Approximate Dirichlet Process Computing in Finite Normal Mixtures: Smoothing and Prior Information.” Journal of Computational and Graphical Statistics 11: 508–32.
Kristensen, Kasper, Anders Nielsen, Casper W. Berg, Hans Skaug, and Bradley M. Bell. 2016. TMB: Automatic Differentiation and Laplace Approximation.” Journal of Statistical Software 70 (5): 1–21.
Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Random Correlation Matrices Based on Vines and Extended Onion Method.” Journal of Multivariate Analysis 100 (9): 1989–2001.
Lo, A Y. 1984. “On a Class of Bayesian Nonparametric Estimates I: Density Estimates.” The Annals of Statistics 12: 351–57.
Louis, Thomas A. 1982. “Finding the Observed Information Matrix When Using the EM Algorithm.” Journal of the Royal Statistical Society. Series B (Methodological) 44 (2): 226–33.
Lunn, David, David Spiegelhalter, Andrew Thomas, and Nicky Best. 2009. “The BUGS Project: Evolution, Critique and Future Directions.” Statistics in Medicine 28 (25): 3049--3067.
Michaud, Nicholas, Perry de Valpine, Daniel Turek, Christopher J. Paciorek, and Dao Nguyen. 2021. “Sequential Monte Carlo Methods in the Nimble and nimbleSMC r Packages.” Journal of Statistical Software 100 (3): 1–39.
Neal, R. 2000. Markov chain sampling methods for Dirichlet process mixture models.” Journal of Computational and Graphical Statistics 9: 249–65.
Neal, Radford M. 2003. “Slice Sampling.” The Annals of Statistics 31 (3): 705–41.
———. 2011. MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. Chapman; Hall/CRC.
Paciorek, C. J. 2009. “Understanding Intrinsic Gaussian Markov Random Field Spatial Models, Including Intrinsic Conditional Autoregressive Models.” University of California, Berkeley.
Roberts, G. O., and S. K. Sahu. 1997. “Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (2): 291–317.
Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory and Applications. Boca Raton: Chapman & Hall.
Sethuraman, J. 1994. “A Constructive Definition of Dirichlet Prior.” Statistica Sinica 2: 639–50.
Skaug, Hans J., and David A. Fournier. 2006. “Automatic Approximation of the Marginal Likelihood in Non-Gaussian Hierarchical Models.” Computational Statistics & Data Analysis 51 (2): 699–709.
Stan Development Team. 2021a. “Stan Language Functions Reference Manual.” 2.27 ed.
———. 2021b. “Stan Language Reference Manual.” 2.27 ed.
———. 2023. “Stan Modeling Language Users Guide and Reference Manual, Version 2.32.2.”
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC.” Statistics and Computing 27 (5): 1413–32.
Watanabe, Sumio. 2010. “Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory.” Journal of Machine Learning Research 11 (Dec): 3571–94.